Development of California Regulations to Govern the Testing and Operation of Automated Driving Systems

Christopher Nowakowski
Steven E. Shladover
Ching-Yao Chan
Han-Shue Tan

California PATH Program
Institute of Transportation Studies
University of California, Berkeley
Overview

- Automated Vehicles Levels (Continuum)
- Fundamental Regulatory Challenges
- Regulatory Issues Considered for Public Roads Testing
- Regulatory Issues Considered for Deployment
- What’s Next?
SAE J3016 Levels of Automation

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Dynamic Driving Steering/Speed</th>
<th>Roadway Monitoring</th>
<th>Fallback Steering/Speed</th>
<th>System Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>Driver + System</td>
<td>Driver</td>
<td>Driver</td>
<td>Limitations</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>System</td>
<td>Driver</td>
<td>Driver</td>
<td>Limitations</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>System</td>
<td>System</td>
<td>Driver</td>
<td>Limitations</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Limitations</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Everywhere</td>
</tr>
</tbody>
</table>

Human Driver Monitors the Driving Environment

System Monitors the Driving Environment

http://www.sae.org/misc/pdfs/automated_driving.pdf
Driver Takeover!

<table>
<thead>
<tr>
<th>Event</th>
<th>Mean PRT</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRT to Tail Lights (1978)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distracted BRT to FCW (2000)</td>
<td></td>
<td>1.18 s</td>
</tr>
<tr>
<td>BRT to Vehicle Pull-Out / Objects (2000)</td>
<td>1.28 - 2.3 s</td>
<td>1.3 - 1.9 s</td>
</tr>
<tr>
<td>PRT to Freeway Lane Drop Sign (1990)</td>
<td>3.7 - 6.6 s</td>
<td></td>
</tr>
</tbody>
</table>

- **BMW (2013)** – Distracted Driver, Stopped Car Ahead, Takeover
 - 7 Second Notice → 100% Lane Change
 - 5 Second Notice → 20% Stopped, Then Lane Change
- **Leeds, UK (2014)** – Distracted, Unexpected Takeover
 - Steering took up to 45 s to really stabilize
- **NHTSA L2/L3 Studies (2015)**
- Even with short mean PRTs, populations exhibit long tails
SAE J3016 Examples

<table>
<thead>
<tr>
<th>Level</th>
<th>System Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>Acura/Honda, Audi, Cadillac/GM, Chrysler, Ford/Lincoln, Hyundai, Infiniti, Lexus/Toyota, Mercedes, Volvo</td>
</tr>
<tr>
<td></td>
<td>• Adaptive Cruise Control OR Lane Keeping Assistance</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>ACC+LC (LKA/LC may not handle all marking/curves)</td>
</tr>
<tr>
<td></td>
<td>• Adaptive Cruise Control AND Lane Centering</td>
<td>Acura, Audi, Hyundai, Infiniti, Mercedes</td>
</tr>
<tr>
<td></td>
<td>• Traffic Jam Assist (Low Speed)</td>
<td>GM’s Super Cruise (High Speed / Freeway)</td>
</tr>
<tr>
<td></td>
<td>• Parking Assist</td>
<td>Cadillac (2017?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic Jam Assist (Low Speed / Freeway)</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>Google Lexus Test Cars (2010-Current)</td>
</tr>
<tr>
<td></td>
<td>• Test Vehicles</td>
<td>Volvo 100-Car Gothenburg Tests (2017?)</td>
</tr>
<tr>
<td></td>
<td>• Other Applications Unclear</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>Long-Term Target for Most Manufacturers</td>
</tr>
<tr>
<td></td>
<td>• Driving Pilot (w. Limitations)</td>
<td>Google’s Target for 2-Seat NEV Test Vehicle</td>
</tr>
<tr>
<td></td>
<td>• Closed Campus Driverless Shuttle</td>
<td>CityMobil2 (Low Speed / Segregated Routes)</td>
</tr>
<tr>
<td></td>
<td>• Driverless Valet Garage Parking</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Automated Taxi (Even for Children)</td>
<td></td>
</tr>
</tbody>
</table>
Fundamental Regulatory Challenges

- Automation blurs the traditional regulatory boundaries
 - NHTSA is responsible for new vehicle equipment & safety
 - States are responsible for vehicle operation (driver licensing)

- Need to balance:
 - Public Safety while unproven systems are being tested
 - Encouraging technological innovation promising improved safety

- Lack of technical standards to provide baseline references for performance, safety, or testing protocols or procedures

- Cultural differences between different regulatory agencies, the automotive industry, and the IT industry

- Differing concepts of certification across government agencies, industries, and countries:
 - Self-Certification vs. Third-Party Certification
SAE Level 2 Automation Systems: Issues to Consider

- Level 1-2 systems are severely limited by factors not necessarily apparent to drivers
 - lane marking type, curve radius, etc.
- Level 1-2 system can’t spot trouble
- Drivers can safely look away from the road
 - How long is too long?
 - Can drivers interact with a phone?
- Misuse (Unknowing)
 - Will the public understand that difference between SAE Level 2 vs. Level 4 System?
- Abuse (Intentional)
 - Leaving the driver’s seat
 - Taping a soda can to the steering wheel
AV Public Roads Testing Regulations

• **Understanding Testing Characteristics & Goals**
 – Manufacturer interviews

• **Administrative Regulations Considered**
 – Ensuring safety management in the development process
 – Prohibition against testing certain vehicles or locations
 – Test driver qualifications and training
 – Identification or marking of test vehicles
 – Crash reporting thresholds
 – EDR data specifications & privacy issues
 – EDR data usage and program evaluation metrics
Testing Characteristics & Goals

• Recognize that testing is iterative, changes are frequent, and faults/failures are to be expected
 – Not a linear progression from test track to public roads
 – Minimum testing miles not an indication of readiness
• Safety is achieved through the combination of design, testing policies, and the test driver
 – Test Driver Qualifications & Training
 – Safety Management Process
 – Different levels of system maturity (confidence)
• Prohibiting certain testing locations or vehicle types is counterproductive
• Different testing stages, goals, and protocols
 – Engineering Testing
 – Naïve Driver Testing (Usability, User Experience)
 – Field Operational Testing
Manufacturer Testing Permit Issues: Demonstrating Safety Management

• **Questions We Initially Considered**
 – How many test drivers should be in the vehicle?
 – When is the system ready for more challenging tests and when does the system need to go back to test track testing?
 – What testing protocols are needed to maintain safety?

• **Safety Management Process**
 – No one-size fits all answer to many safety policy questions
 – Continual risk assessment in decision making
 – Safety Culture - policies and protocols must be followed
 – Potential for 3rd Party Safety Concept Certification (Bosch received this type of certification from TÜV Süd, 2013)

• **Test Drivers**
 – Qualifications \rightarrow minimum equivalent to commercial drivers
 – Training \rightarrow dependent on system, graduated programs
Test Vehicle Marking

• Should You Require AV Test Vehicles Markings?
 – Static: Decal or License Plate
 – Dynamic: Light

• Pros & Cons
 – Warns other in case test vehicle does something unexpected
 – Test driver is responsible for preventing bad behavior
 – Some cars already easily identifiable…others are not
 – Other road users may treat AV differently (decreasing validity of testing)
 – Marking makes the vehicle a target for fraud or hackers
 – CHP – probably not a need
AV Test Program Performance Metrics

• How do you evaluate a test permit program’s safety?
 – Crashes
 – Need Exposure
 – Surrogate Safety Metrics (Near Crashes)?
 – EDR Data

• Crash Reporting
 – CA VC 16000 requires reporting of crashes ($750 damage or injuries)
 – Might take time to filter from police reports to DMV
 – Report all crashes (with some minimum threshold)?
 – Report only crashes where AV system active?
 – Report only crashes where AV system active & at fault?
 – Testing safety relies on (driver + system) ➔ Report all crashes
EDR Data

- **Surrogate Safety Metrics (Near Crashes)**
 - Many studies analyzing naturalistic data (VTTI 100-Car, SHRP2)
 - Much research on driver monitoring systems (phone apps)
 - Both use combinations of hard accelerations (braking, lateral)
 - No clear metrics in literature without video analysis (false alarms)
 - Hard to catch near misses when the sensors didn’t anything

- **Should EDR data be submitted to DMV?**
 - Each vehicle will have a different sensor suite & data definitions
 - Standardization difficult, especially during testing phase
 - Focus on defining a report from manufacturers
 - CA requiring safety critical disengagements
 - Controversial because disengagements may not indicate safety problems or risky behavior
AV Public Deployment Regulations

- Ensuring Safety Prior to Deployment
 - Behavioral Competency
 - Functional Safety
 - Certification
- AV Registration and External Marking
- Driver Training & Licensing
- Cybersecurity & Maintenance
- Driverless Operation
Ensuring Safety: Behavioral Competency

• **Behavioral Competency** describes how well the automation behaves when dealing with *external hazards* in the normal driving environment.

• Why is Behavioral Competency not just an adaptation to the *Driving Performance Exam*?
 – DPE looks at benign conditions (sometimes only urban)
 – A basic vehicle control test is going to be easy for an AV manufacturer to tune to perfection: stopping, starting, staying in the lane, obeying traffic laws
 – DPE infers potential driving performance potential based on where the driver is looking, sequences of maneuvers, etc.
 – AV sensors always looking everywhere they can see, so how do you infer what the system does with that data?
 – Safety more related to abnormal condition behavior
Behavioral Competency Testing

- Behavioral Competency could eventually be distilled into performance standards and tests (DMV, NHTSA, SAE, ISO)
- Define AV Operating Scenarios:
 - Freeway Pilot
 - Rural Highway Pilot
 - City Street Pilot
 - Valet Parking
 - Low-Speed Shuttles
- Define High-Level Minimum Competencies (Maneuvers)
 - Differs by SAE Level of Automation (Assumed Level 3)
- Define Test Conditions for Each Competency
 - Could be DMV, NHTSA, MFG, SAE/ISO
 - NHTSA NCAP FCW Confirmation Test (34 Pages)
- Conduct Tests
 - Could be DMV, NHTSA, MFG, 3rd Party
<table>
<thead>
<tr>
<th>Critical Driving Maneuvers</th>
<th>Freeway</th>
<th>Rural Highway</th>
<th>City Streets</th>
<th>Valet Parking</th>
<th>Low-Speed Shuttles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect Operating Envelope & System Malfunctions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detect & Respond to Speed Limit Changes (Advisory)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detect Passing and No Passing Zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect Work Zones, Temporary Lane Shifts, or Safety Officials</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect and Respond to Traffic Control Devices</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect and Respond to Access Restrictions (one-way, no turn,...)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Perform High Speed Freeway Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform a Lane Change or Lower Speed Merge</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park on the Shoulder (Minimal Risk State)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigate Intersections & Perform Turns</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigate a Parking Lot & Locate Open Spaces</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Perform Car Following (Including Stop & Go)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detect & Respond to Stopped Vehicles</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detect & Respond to Intended Lane Changes / Cut-Ins</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detect & Respond to Encroaching Oncoming Vehicles</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detect & Respond to Static Obstacles in Roadway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detect & Respond to Bikes, Peds, Animals, or Moving Objects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detect Emergency Vehicles</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ensuring Safety: Functional Safety

- **Functional Safety** refers to the ability of the automated driving system to accommodate *internal hazards & failures*, which could be electrical, mechanical, or software.
 - Cannot be evaluated through comprehensive testing
 - Achieved during the design and development using methodologies such as those described in ISO 26262

- ISO 26262 currently relies on the driver as a backup
 - Driver intervention not required in AV Levels 4+
 - Also not entirely considered are interactions between the AV system and driver: *Errors, Misuse, and Abuse*
 - Efforts to modify ISO 26262 for AVs will take time

- Few avenues to define sensible functional safety regulations, especially in the short term
Ensuring Safety: Certification

- **Self-Certification** used in the US for compliance with FMVSS
 - NHTSA spends about $11 M / year on compliance testing
 - NHTSA → Broad Investigation, Recall, & Punitive Powers

- **Type Approvals** used outside the US for ADAS & in US by EPA
 - Requires testable standards (e.g., ISO) & an approval body

- **Third-Party Testing** NHTSA NCAP (5-Star Crash Rating) & IIHS
 - NHTSA: $17.4 M / yr in testing and $16.6 M / yr in development
 - More appropriate for behavioral competency than functional safety

- **Third-Party Safety Concept Certification** used by EU manufacturers
 - Safety management process during prototype development & testing

- **Third-Party Functional Safety Certification** gaining popularity in EU
 - Manufacturer correctly following ISO 26262 methodology
3rd Party Certification Questions

• What is Being Certified?
 – Behavioral Competency
 – Functional Safety

• What is the Depth of the Review?
 – Driving Test (Benign Conditions)
 – More Comprehensive Testing (Standards, Hazards, Abnormal Conditions)
 – Review of Mfg. Tests & Data
 – Functional Safety Process
 – Functional Safety “Hazard Analysis” by Behavioral Competency Requirement
 – Full Code Review (Aviation)
AV Registration & Driver Licensing

• AV Registration and External Marking
 – Key Registration Issue: Understanding AV capabilities (resale, CHP)
 – External Marking: Do the benefits outweigh the cons?

• Driver Training and Licensing
 – License endorsements proposed/mandated by NV, NJ, other states
 • Is the AV driver training universal or vehicle-specific?
 • What special knowledge (written test) must be demonstrated?
 • What special skills (driving test) must be demonstrated?
 – Without an endorsement program, how do drivers get trained?
 • Current ADAS owners often unaware of vehicle features
 • New Vehicles vs. Used Vehicles vs. Borrowed/Rented Vehicles
 • PSA Campaign
 – General license testing should exclude AV usage
AV Cybersecurity & Maintenance

• Cybersecurity
 – Most vehicle hacking required physical access to vehicle (CAN)
 – Tesla website/server hacked, allowing limited access to cars
 – 60 Minutes (2015) showed remote hacking a GM Impala over 4G
 – Sen. Ed Markey (D-MA) commissioned a report
 – No known incidents as of today
 – NHTSA will probably need to act for all cars, not just AVs

• Maintenance
 – System will need to self-diagnose, and prevent activation (faults, failures, or required maintenance)
 – Dealers will need to train their staff to repair & calibrate systems
 – Similar concerns when hybrids were introduced

• Focus on Self-Diagnosis Regulation Language
Driverless Operations Issues

- Multiple concepts will be driverless
 - Valet Parking, Low Speed Shuttles, NEV Taxi
- Clear marking such as a special license plate?
 - CA CHP wanted some way to quickly identify an unmanned AV vs. runaway vehicle
- What is the desired response to emergency vehicles?
- Emergency stop (request) for occupants?
- Communication to owner/operator for passengers, maintenance, failures, crashes, stuck vehicle, etc.
- Owner/operator information exchange post-incident
- Restrictions on who can activate or use (children)
What’s Next?

- Industry standards development proceeding slowly
 - ISO revisiting 26262 for AVs
 - ISO has both vehicle & HF groups looking at AV issues
 - SAE ORAV (J3016, J3018), S&HF AV Task Force
 - European Commission funded project on AV standards & certification needs prior to deployment

- Long-term adapting or re-interpreting existing codes
 - Responding to police, crash monitoring, insurance exchange
 - Penalties for bad driving behavior
 - Restrictions on driver/passenger behaviors (DUI, open alcohol, cell phones, texting, distraction, recklessness…)
 - Protection of unattended children

- Diversity of state approaches ➔ AAMVA