Safe Testing and Deployment of Vehicles Equipped with Automated Driving Systems Guidelines

Edition 2

September 2020

VEHICLE STANDING COMMITTEE
AUTONOMOUS VEHICLES SUBCOMMITTEE
Table of Contents

Executive Summary ... 3
Chapter 1 *Introduction* ... 7
Chapter 2 *Automated Vehicle Classification, Terms, Acronyms, and Technologies* 10
Chapter 3 *Administrative Considerations* 17
 3.1 Administration .. 17
 3.2 Advanced Driver-Assistance Systems 20
Chapter 4 *Vehicle Considerations* ... 22
 4.1 Application and Permit for Manufacturers and Other Entities to Test Vehicles on Public Roadways ... 22
 4.2 Actions on Permit Process ... 24
 4.3 Automated Driving System–Equipped Vehicle Information on the Manufacturer’s Certificate of Origin and Manufacturer’s Statement of Origin 26
 4.4 Titling and Branding for New and Aftermarket Automated Driving System–Equipped Vehicles ... 27
 4.5 Vehicle Registration ... 29
 4.6 License Plates ... 30
 4.7 Financial Responsibility (Also Known as Mandatory Liability Insurance) ... 31
 4.8 Jurisdictional Approval of the Automated Driving System as the Driver ... 32
 4.9 Federal Motor Vehicle Safety Standards and Canadian Motor Vehicle Safety Standards 34
 4.10 Periodic Motor Vehicle Inspections ... 36
Chapter 5 *Driver Licensing Considerations* 38
 5.1 Driver and Passenger Roles Defined .. 38
 5.2 Driver’s License Requirements for Testing by Manufacturers and Other Entities ... 39
 5.3 Remote Driver ... 40
 5.4 Endorsements and Restrictions for Deployed Vehicles 43
 5.5 Driver Training for Drivers on Vehicle Technologies 44
 5.6 Training for Driver Educators, Driver Education and Driver Training Programs ... 46
 5.7 Driver’s License Skills Testing with Vehicle Technologies 47
 5.8 Training Motor Vehicle Agency Examiners on Vehicle Technologies ... 49
 5.9 Training Motor Vehicle Agency Staff on Vehicle Technologies ... 50
 5.10 Commercial Driver Licensing .. 52
Chapter 6 Law Enforcement Considerations .. 54
 6.1 Vehicle Identification .. 54
 6.2 Crash and Incident Reporting .. 56
 6.3 Criminal Activity ... 57
 6.4 Distracted Driving .. 59
 6.5 Establishing Operational Responsibility and Law Enforcement Implications ... 60
 6.6 Law Enforcement and First Responder Interaction Plans 61
 6.7 Law Enforcement Protocols for Level 4 and 5 Vehicles. 63
 6.8 Law Enforcement and First Responder Safety and Training 64
 6.9 Adherence to Traffic Laws ... 67
 6.10 Vehicle Response to Emergency Vehicles, Manual Traffic Controls, and
 Atypical Road Conditions ... 68
 6.11 System Misuse and Abuse .. 69

Chapter 7 Other Considerations ... 71
 7.1 Cybersecurity for Vehicles with Automated Driving Systems 71
 7.2 Data Collection .. 72
 7.3 Low-Speed Automated Shuttles ... 75
 7.4 Connected Vehicles ... 77
 7.5 Platooning .. 79

Chapter 8 Next Steps ... 81

Appendix A Summary of Recommended Jurisdictional Guidelines for the Safe Testing and
 Deployment of Automated Driving System–Equipped Vehicles 82
Appendix B Summary of Recommendations for Manufacturers and Other Entities for the
 Safe Testing and Deployment of Automated Driving System–Equipped Vehicles 95
Appendix C Automated Vehicles Subcommittee Roster (2019–2020) 99
Appendix D Overview of Nevada’s Driver Examiner Training on
 Advanced Driver-Assistance Systems ... 101
Appendix E Links to Jurisdictional Automated Driving System–Equipped Vehicles
 Testing Applications .. 103
The American Association of Motor Vehicle Administrators (AAMVA) is a tax-exempt nonprofit organization developing model programs in motor vehicle administration, law enforcement, and highway safety. AAMVA also serves as an information clearinghouse in these areas and acts as the international spokesperson for these interests.

Founded in 1933, AAMVA represents the state, provincial, and territorial officials in the United States and Canada who administer and enforce motor vehicle laws. AAMVA’s programs encourage uniformity and reciprocity among the jurisdictions. The association also serves as a liaison with other levels of government and the private sector. Its development and research activities provide guidelines for more effective public service. AAMVA’s membership includes associations, organizations, and businesses that share an interest in the association’s goals.

AAMVA recognized an opportunity to provide leadership and assistance to the motor vehicle administrative and law enforcement communities by establishing the Autonomous Vehicle Working Group (AVWG) to examine the potential impacts of Automated Driving System (ADS)—equipped vehicle testing and deployment on these communities and to develop guidance. The working group also examined the impact of Advanced Driver-Assistance Systems (ADAS) on drivers as well as driver education and driver testing. The AVWG was renamed the Automated Vehicles Subcommittee in January 2020.

ADS-equipped vehicles do not need a human driver to operate but may require a human driver to take control of the vehicle. These vehicle systems consist of Level 3 Conditional Driving Automation, Level 4 High Driving Automation, and Level 5 Full Driving Automation as established by the Society of Automotive Engineers (SAE) International and are outlined in Chapter 2.

SAE International, which devises consensus standards for the engineering industry, established a six-tier classification system ranging from no vehicle automation to full vehicle automation.

- Level 0 – No Driving Automation
- Level 1 – Driver Assistance
- Level 2 – Partial Driving Automation
- Level 3 – Conditional Driving Automation
- Level 4 – High Driving Automation
- Level 5 – Full Driving Automation
A successful path to the safe testing and deployment of technology in vehicles must include appropriate government oversight developed in coordination with strong stakeholder engagement formed through partnerships with the many entities engaged in or affected by these rapidly developing technologies. These partnerships should be formed to address the far-reaching impacts of the technologies and should include representatives from a broad spectrum of government organizations, government support associations, industry and advocacy groups.

AAMVA will continue to work closely with and coordinate ADS-equipped vehicle initiatives through partnerships with the United States Department of Transportation (U.S. DOT) and the Canadian Council of Motor Transport Administrators (CCMTA). To keep this report relevant and to provide the best possible guidance to the AAMVA community, it is expected the Automated Vehicle Subcommittee will update this report periodically. The Automated Vehicle Subcommittee is committed to keeping pace with the evolution of vehicle technology, providing timely information, and sharing its expertise.
Important Notations to the Reader

Edition 2 Replaces Edition 1 of this Report

Edition 2 contains global updates to Edition 1 as well as updates to specific topics covered in Edition 1 and includes several new topics. Substantive changes in Edition 2 are outlined below.

Global Changes

The term “highly automated vehicles” referring to SAE International Level 3, 4, or 5 vehicles has been retired and replaced by the term “ADS-equipped vehicles,” which is consistent with the current industry terminology to describe a Level 3, 4, or 5 driving automation system.

Several chapters now include information related to ADAS, which are currently in vehicles and are designed to help drivers with certain driving tasks (e.g., staying in the lane, parking, avoiding crashes, reducing blind spots, and maintaining a safe headway).

The AVWG was renamed the Automated Vehicles Subcommittee in January 2020.

Substantive Changes in Edition 2

Executive Summary – contains several updates

Chapter 1. Introduction – contains several updates

Chapter 2. Definitions and Acronyms – contains updates to terms and a few new terms

Chapter 3. Administration Considerations

3.1 Administration
 ■ 3.1.7 – new recommendation
 ■ 3.1.8 – new recommendation

3.2 Advanced Driver-Assistance Systems – new section

Chapter 4. Vehicle Considerations – reorganized

4.1 Application and Permit for Manufacturers and Other Entities to Test Vehicles on Public Roadways – updated
 ■ 4.1.3 – new recommendation
 ■ 4.1.5 – updated recommendation

4.2 Actions on Permit Process – moved from Law Enforcement Considerations chapter to Vehicle Considerations chapter and rewritten
 ■ 4.2.3 and 4.2.4 – new recommendations

4.3 Automated Driving System Equipped Vehicle Information on the Manufacturer’s Certificate of Origin and Manufacturer’s Statement of Origin – some updates

4.4 Titling and Branding for New and Aftermarket Automated Driving System Equipped Vehicles – some updates

4.5 Vehicle Registration
 ■ 4.5.1 – updated recommendation

4.7 Financial Responsibility also known as Mandatory Liability Insurance – section rewritten and updated
 ■ 4.7.1 – 4.7.7 – updated recommendations

4.8 Jurisdictional Approval of the Automated Driving System the Driver – new section

 ■ 4.9.1 – updated recommendation

4.10 Periodic Motor Vehicle Inspections – new section

Chapter 5. Driver Licensing Considerations – reorganized

5.2 Driver’s License Requirements for Testing by Manufacturers and Other Entities
 ■ 5.2.7 – new recommendation
Executive Summary

5.3 Remote Driver – new section

5.5 Driver Training for Drivers on Vehicle Technologies – updated
 ■ MOE 8 – new recommendation

5.6 Training for Driver Educators and Considerations for Driver Education and Driver Training Programs – rewritten and updated
 ■ 5.6.1 – 5.6.3 – updated recommendations

5.7 Driver’s License Skills testing with Vehicle Technologies – updated
 ■ MOE 9 – new recommendation

5.8 Training Motor Vehicle Agency Examiners on Vehicle Technologies – rewritten and updated
 ■ 5.8.1 – 5.8.3 – updated recommendations

5.9 Training Motor Vehicle Agency Staff on Vehicle Technologies – new section

5.10 Commercial Driver Licensing – new section

6.7 Law Enforcement Protocols for Level 4 and 5 Vehicles – new section

6.8 Law Enforcement and First Responder Safety and Training
 ■ MOE 23 – new recommendation

6.9 Adherence to Traffic Laws
 ■ 6.9.1 – updated recommendation

6.11 System Misuse and Abuse
 ■ MOE 27 – updated recommendation

Chapter 6. Law Enforcement Considerations – reorganized

6.2 Crash and Incident Reporting
 ■ MOE 11 and MOE 12 – updated recommendations

6.4 Distracted Driving
 ■ MOE 17 – new recommendation
 ■ MOE 20 – new recommendation

6.6 Law Enforcement and First Responder Interaction Plans – new section

Chapter 7. Other Considerations – new chapter

7.1 Cybersecurity for Vehicles with Automated Driving Systems – new section

7.2 Data Collection – new section

7.3 Low-Speed Automated Shuttles – new section

7.4 Connected Vehicles – new section

7.5 Platooning – new section

A summary of the specific recommendations for jurisdictions described can be found in Appendix A.

A summary of the specific recommendations for MOE can be found in Appendix B.

Appendix C contains an updated list of Automated Vehicles Subcommittee members.

Appendices D, and E are new.
Automated and non-automated vehicles are sharing the roadway, creating challenges for the safe integration of Automated Driver System (ADS)–equipped vehicles. Motor vehicle and law enforcement agencies need to adapt as technologies advance and ADS-equipped vehicles become available.

Manufacturers and other technology companies are testing ADS-equipped vehicles on public roadways, prompting the need for jurisdictions to explore ways to regulate this emerging technology to ensure safety of the motoring public. Some jurisdictions have begun to adopt regulations using different approaches, making it apparent there is a continued need for an updated framework to support a consistent regulatory approach.

In addition, introduction of ADS-equipped vehicles into the existing roadway transportation system requires a transformation some jurisdictions are not currently equipped to manage without assistance from industry, partners, and other community members.

Jurisdictional implementation of the recommendations will facilitate a consistent regulatory framework that balances current public safety with the advancement of vehicle innovations to reduce crashes, fatalities, injuries, and property damage.

Report Structure

The Automated Vehicles Subcommittee developed this report to provide voluntary recommended guidelines for motor vehicle administrations, law enforcement, manufacturers, and other entities for the safe testing and deployment of ADS-equipped vehicles and to provide information and recommendations related to technology in vehicles today known as Advanced Driver Assistance System (ADAS). The recommended guidelines are divided into five chapters:

- Administrative Considerations
- Vehicle Considerations
- Driver Licensing Considerations
- Law Enforcement Considerations
- Other Considerations.

Each chapter contains several sections, each discussing specific topics. The sections are organized in a similar format. This includes background information followed by guidelines and recommendations for testing vehicles. Guidelines for deployed vehicles are also discussed and will continue to evolve. Each
section concludes with a discussion of the benefits of implementing the recommendations and the potential challenges jurisdictions may encounter.

The Appendices include:

- **Appendix A**, Summary of Recommended Jurisdictional Guidelines for the Safe Testing and Development of ADS-Equipped Vehicles
- **Appendix B**, Summary of Recommendations for Manufacturers and Other Entities for the Safe Testing and Development of ADS-Equipped Vehicles
- **Appendix C**, Automated Vehicles Subcommittee Roster (2019–2020)
- **Appendix D**, Overview of Nevada’s Driver Examiner Training on ADAS
- **Appendix E**, Links to Jurisdictional ADS-Equipped Vehicles Testing Applications

Guiding Principles

The principles guiding the development of this report were:

- facilitating a consistent and balanced oversight approach by motor vehicle administrators to avoid inconsistent regulatory practices that could create unnecessary hurdles for vehicle and technology manufacturers;
- supporting the research and development of technology that has the potential to improve traffic safety while providing mobility options for underserved populations;
- supporting the safe testing and deployment of ADS-equipped vehicles; and
- confirming the roles and responsibilities of jurisdictions and the federal government.

Collaboration Among Stakeholders and Partners

A successful path to the safe testing and deployment of ADS-equipped vehicles must include developing strong partnerships. These partnerships should be formed to address the far-reaching impacts of the technologies and should include representatives from a range of government organizations, government support associations, industry, research institutes, and advocacy groups.

Because automotive technology development and deployment has worldwide impact, collaboration within jurisdictions, nationally and internationally, is vital to the safe integration of ADS-equipped vehicles. Several national efforts, in which the American Association of Motor Vehicle Administrators (AAMVA), AAMVA members, and the Automated Vehicles Subcommittee participated, helped form the development of this report. In addition, AAMVA and The Canadian Council of Motor Transport Administrators (CCMTA) continue to collaborate to provide consistent recommendations to U.S. and Canadian jurisdictions.

Current Regulatory Efforts

Some jurisdictions have developed requirements for manufacturers and other entities (MOEs) to test ADS-equipped vehicles on public roadways; others have chosen not to adopt specific requirements until more information is available. Jurisdictional activities were reviewed in an effort to learn different oversight approaches. The Automated Vehicles Subcommittee used the collective experiences of the jurisdictions to assist in shaping these recommendations.

Out of Scope

The Automated Vehicles Subcommittee determined that several topics were out of scope. Although critical
to the testing and deployment of ADS-equipped vehicles, they are not addressed in this report. These include but are not limited to:

- vehicle import/export considerations;
- enabling infrastructure;
- public outreach campaigns;
- fiscal impacts to jurisdictions;
- economic considerations; and
- environmental impacts.

Recommendations Are Voluntary

The recommendations in this report are voluntary; jurisdictions are not required to adopt them. If a jurisdiction chooses to adopt the recommendations, most can be appropriately applied to different types of vehicles, including, but not limited to, passenger vehicles, low-speed shuttles, fleet-owned vehicles, and commercial vehicles.
Chapter 2 Automated Vehicle Classification, Terms, Acronyms, and Technologies

This chapter provides an explanation of the terms commonly used to identify and differentiate ADAS and ADS-equipped vehicles of varying capabilities at the time this report was published. Users of this report will benefit from familiarization with the terminology and acronyms.

A wide variety of vehicle technologies are available in the marketplace, and others are continually under development (e.g., forward collision warning, lane departure warning). This report does not attempt to define these specific vehicle technologies. Although there are technologies of a similar nature, some manufacturers use proprietary terms. Various resources, such as www.mycardoeswhat.org, provide information and videos of specific vehicle technologies.

In 2019, the American Automobile Association (AAA) published “Advanced Driver Assistance Technology Names,” which illustrates the wide variety of names used for ADAS features and suggests terms that could be used to advance standardization. AAMVA supports AAA’s efforts and will continue to update documents with the appropriate terminology as consistency and standardization occur.

Vehicle Classification Systems

AAMVA strongly encourages the adoption of terminology developed by SAE International that is used throughout this report. Refer to the SAE taxonomy for additional information on each of the classifications.

SAE International Classifications

SAE International, which devises consensus standards for the engineering industry, established a six-tier classification system ranging from no vehicle automation to full vehicle automation.

Level 0 – No Driving Automation, the performance by the driver of the entire dynamic driving task (DDT), even when enhanced by active safety systems.

Level 1 – Driver Assistance, the sustained and operational design domain (ODD)–specific execution by a driving automation system of either the lateral or the longitudinal vehicle motion control subtask of the DDT (but not both simultaneously) with the expectation that the driver performs the remainder of the DDT.

Level 2 – Partial Driving Automation, the sustained and ODD-specific execution by a driving automation system of both the lateral and longitudinal vehicle motion control subtasks of the DDT with the expectation that the driver completes the object and event detection and response (OEDR) subtask and supervises the driving automation system.

Level 3 – Conditional Driving Automation, the sustained and ODD-specific performance by an ADS of the entire DDT with the expectation that the DDT fallback-ready user is receptive to ADS issued requests to intervene, as well as to DDT performance-relevant system failures in other vehicle systems, and will respond appropriately.

Level 4 – High Driving Automation, the sustained and ODD-specific performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.
Level 5 – Full Driving Automation, the sustained and unconditional (i.e., not ODD-specific) performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.

SAE International Definitions

The following definitions are also provided by SAE International to establish a baseline for commonly used terms and are used throughout this report:

Automated Driving System (ADS) – the hardware and software that are collectively capable of performing the entire DDT on a sustained basis, regardless of whether it is limited to a specific ODD; this term is used specifically to describe a Level 3, 4, or 5 driving automation system.

NOTE: In contrast to ADS, the generic term “driving automation system” refers to any Level 1 to 5 system or feature that performs part or all of the DDT on a sustained basis. Given the similarity between the generic term “driving automation system” and the Level 3- to 5-specific term “Automated Driving System,” the latter term should be capitalized when spelled out and reduced to its acronym, ADS, as much as possible, but the former term should not be.

ADS-dedicated vehicle (ADS-DV) – a vehicle designed to be operated exclusively by a Level 4 or Level 5 ADS for all trips within its given ODD limitations (if any). An ADS-DV is a truly “driverless” vehicle.

ADS-equipped vehicle – a vehicle equipped with an Automated Driving System (ADS).
ADS-equipped dual-mode vehicle – a type of ADS-equipped vehicle designed for both driverless operation and operation by a conventional driver for complete trips.

Driver – a user who performs in real-time part or all of the DDT and DDT fallback for a particular vehicle. NOTE: In a vehicle equipped with a driving automation system, a driver may in some vehicles assume or resume performance of part or all of the DDT from the driving automation system during a given trip.

Driving mode – type of vehicle operation with characteristic DDT requirements (e.g., expressway merging, high-speed cruising, and low-speed traffic jam). Previously, the term “driving mode” was used; “ODD” is now the preferred term for many of these uses.

Dynamic driving task (DDT) – all of the real-time operational and tactical functions required to operate a vehicle in on-road traffic, excluding the strategic functions such as trip scheduling and selection of destinations and waypoints and including without limitation:

1. lateral vehicle motion control via steering (operational);
2. longitudinal vehicle motion control via acceleration and deceleration (operational);
3. monitoring the driving environment via object and event detection, recognition, classification, and response preparation (operational and tactical);
4. object and event response execution (operational and tactical);
5. maneuver planning (tactical); and
6. enhancing conspicuity via lighting, signaling and gesturing, and so on (tactical).

Dynamic driving task (DDT) fallback – the response by the user or by an ADS to either perform the DDT or achieve a minimal risk condition after occurrence of a DDT performance-relevant system failure(s) or upon ODD exit or the response by an ADS to achieve minimal risk condition, given the same circumstances.

(Human) user – a general term referencing the human role in driving automation.

Minimal risk condition – a condition to which a user or an ADS may bring a vehicle after performing the DDT fallback to reduce the risk of a crash when a given trip cannot or should not be completed.

Object and event detection and response (OEDR) – the subtasks of the DDT that include monitoring the driving environment (detecting, recognizing, and classifying objects and events and preparing to respond as needed) and executing an appropriate response to such objects and events (i.e., as needed to complete the DDT and DDT fallback).

Operate (a motor vehicle) – collectively, the activities performed by a (human) driver (with or without support from one or more Level 1 or 2 driving automation features) or by an ADS (Levels 3–5) to perform the entire DDT for a given vehicle during a trip.

Operational design domain (ODD) – the specific conditions under which a given driving automation system or feature is designed to function, including, but not limited to, driving modes. An ODD may include geographic, roadway, environmental, traffic, speed, and temporal limitations. Previously, the term “driving mode” was used; “ODD” is now the preferred term for many of these uses.

Passenger – a user in a vehicle who has no role in the operation of that vehicle.
Remote driver – A driver who is not seated in a position to manually exercise in-vehicle braking, accelerating, steering, and transmission gear selection input devices (if any) but is able to operate the vehicle.

Request to Intervene – notification by the ADS to a driver indicating that s/he should promptly perform the DDT fallback.

Other Key Terms and Definitions

For purposes of this report, the following definitions apply:

Advanced Driver-Assistance Systems (ADAS) – Systems designed to help drivers with certain driving tasks (e.g., staying in the lane, parking, avoiding crashes, reducing blind spots, and maintaining a safe headway). ADAS are generally designed to improve safety or reduce the workload on the driver. With respect to automation, some ADAS features could be considered SAE Level 1 or Level 2, but many are Level 0 and may provide alerts to the driver with little or no automation.

Applicant – a person who applies for or requests a driver’s license permit or driver’s license.

Automated mode – the mode that is set in the vehicle in order for the automated actions to take over and the driver or user does not control the functions of the vehicle.

Automated vehicle (AV) – any vehicle equipped with autonomous technology that has been integrated into that vehicle.

Automated vehicle technology – technology that has the capability to drive a vehicle without the active physical control or monitoring by a driver.

Automated vehicle testing (AVT) – testing of ADS-equipped vehicles on public roadways.

Automation – the use of electronic or mechanical devices to replace a driver.

Background check – investigation of a candidate’s background based on criteria determined by their prospective or current employer, which may include employment, education, criminal records, credit history, motor vehicle, and license record checks.

Branding – adding words or phrases to a vehicle title document that describe an event that has impacted the vehicle value or ability to operate safely on the highway.

Crash (reportable crash) – a collision resulting in a person’s injury or death or property damage that reaches the jurisdiction’s threshold.

Crash report – a report completed by a law enforcement officer who investigates a motor vehicle crash.

Data collection mechanisms (DCM) – includes, but is not limited to, recording media such as on-board Electronic Data Recorders (EDR), on-board CPU(s), cloud-based CPU(s), and so on. Source: SAE 1660.

Deploy/deployment/deployed – the operation of an ADS-equipped vehicle on public roads by members of the public or for use by the public who are not employees, contractors, or designees of a manufacturer or other testing entity or for purposes of sale, lease, providing transportation services for a fee, or otherwise making commercially available outside of a testing program.

Driver history – record containing all convictions and other licensing actions of each driver maintained by the licensing jurisdiction.

Driver testing – the examination of an applicant to determine if s/he possesses the knowledge, skills, and ability to safely operate a vehicle on public roadways.
Driver training – instruction provided to an individual on how to operate a vehicle safely.

Endorsement – an authorization to an individual’s driver’s license permitting the individual to operate certain types of vehicles.

Event data recorder (EDR) – a device installed in some automobiles to record information related to vehicle crashes or incidents.

Human–machine interface (HMI) – software and hardware that allows human operators to monitor the state of a process under control, modify control settings to change the control objective, and manually override automatic control operations in the event of an emergency. The HMI also allows a control engineer or operator to configure set points or control algorithms and parameters in the controller. The HMI also displays process status information, historical information, reports, and other information to operators, administrators, managers, business partners, and other authorized users. Operators and engineers use HMIs to monitor and configure set points, control algorithms, send commands, and adjust and establish parameters in the controller. Source(s): NIST SP 800-82 Rev. 2.

Incident – an occurrence involving one or more vehicles in which a hazard is involved but not classified as a crash because of the degree of injury and extent of damage.

Jurisdiction – any state, district, territory, or province of the United States or Canada.

Manufacturer – an individual or company that designs, produces, or constructs vehicles or equipment. Manufacturers include original equipment manufacturers (OEMs), multiple and final stage manufacturers, modifiers or upfitters (individuals or companies making changes to a completed vehicle before first retail sale or deployment), and modifiers (individuals or companies making changes to existing vehicles after first retail sale or deployment).

Manufacturer’s safety plan – a clearly stated policy to help all employees understand the priority of developing safe and healthy working conditions and appropriate goals and objectives for the program.

Modifier or upfitter – an individual or company that specializes in the design or installation of aftermarket products.

Motor vehicle agency (MVA) – either the motor vehicle or driver license agency or both if they are within one agency.

Nondrivers – a user of an automated vehicle who normally would not be able to drive a vehicle (i.e., age limitations, disabilities).

Occupant – a human in the vehicle, regardless of role or responsibility.

Other entities and educational institutes – any individual or company, that is not a manufacturer, involved with helping to design, supply, test, operate, or deploy automated vehicles, technology, or equipment.

Rules of the road – phrase used to describe jurisdictional traffic laws.

Society of Automotive Engineers (SAE) International – an automotive and aerospace standard setting body that coordinates development of voluntary consensus standards. See www.sae.org/about.

Skills test – a test to determine if the driver has a minimum level of skills to drive in most traffic situations while adhering to a jurisdiction’s traffic laws.
Suspension – the temporary withholding of the license to drive, usually for a specified period of time.

Testing – the operation of an ADS-equipped vehicle on public roads by employees, contractors, or designees of a manufacturer or other entities for the purpose of assessing, demonstrating, and validating the ADS capabilities.

Tier 1 supplier – direct suppliers to the original equipment manufacturer (OEM).

Violation – failure to follow jurisdictional laws or regulations.

Acronyms Used in This Document

Advanced Driver-Assistance Systems (ADAS)
American Association of Motor Vehicle Administrators (AAMVA)
American Association of State Highway and Transportation Officials (AASHTO)
American Driver and Traffic Safety Association (ADTSEA)
Association of National Stakeholders in Traffic Safety Education (ANSTSE)
Auto Information Sharing and Analysis Center (Auto ISAC)
Automated Driving System (ADS)
Automated license plate reader (ALPR)
Automated vehicle testing (AVT)
Autonomous Vehicle Working Group (AVWG)
Canadian Council of Motor Transport Administrators (CCMTA)
Canadian Motor Vehicle Safety Standards (CMVSS)
Center for Internet Security’s Critical Security Controls (CIS CSC)
Central processing unit (CPU)
Council of State Governments (CSG)
Data Collection Mechanisms (DCM)
Department of Motor Vehicles (DMV)
Department of Transportation (DOT)
Driving School Association of the Americas (DSAA)
Electric- and hydrogen-fueled vehicles (xEVs)
Event data recorder (EDR)
Emergency medical services (EMS)
Federal Motor Vehicle Safety Standards (FMVSS)
Federal Motor Carrier Safety Administration (FMCSA)
Global Positioning System (GPS)
Governors Highway Safety Association (GHSA)
Human–machine interface (HMI)
International Association of Chiefs of Police (IACP)
International Driver Examiner Certification (IDEC)
International Organization for Standardization (ISO)
Law Enforcement Interaction Plan (LEIP)
Law Enforcement Protocol (LEP)
Manufacturer’s Certificate of Origin (MCO)
Manufacturers and other entities (MOE)
Manufacturer’s statement of origin (MSO)
Mobility as a Service (Maas)
Model minimum uniform crash criteria (MMUCC)
Motor vehicle agency (MVA)
National Conference of State Legislatures (NCSL)
National Fire Protection Association (NFPA)
National Governors Association (NGA)
<table>
<thead>
<tr>
<th>Organization/Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Highway Traffic Safety Administration (NHTSA)</td>
</tr>
<tr>
<td>National Institute of Standards and Technology (NIST)</td>
</tr>
<tr>
<td>National Motor Vehicle Title Information System (NMVTIS)</td>
</tr>
<tr>
<td>Noncommercial Model Driver Testing System (NMDTS)</td>
</tr>
<tr>
<td>Notice of proposed rulemaking (NPRM)</td>
</tr>
<tr>
<td>Novice Teen Driver Education and Training Administrative Standards (NTDETAS)</td>
</tr>
<tr>
<td>Object and event detection and response (OEDR)</td>
</tr>
<tr>
<td>Original equipment manufacturer (OEM)</td>
</tr>
<tr>
<td>Society of Automotive Engineers (SAE) International</td>
</tr>
<tr>
<td>Test Maintenance Subcommittee (TMS)</td>
</tr>
<tr>
<td>Transportation Research Board (TRB)</td>
</tr>
<tr>
<td>United States Department of Transportation (U.S. DOT)</td>
</tr>
<tr>
<td>Vehicle identification number (VIN)</td>
</tr>
</tbody>
</table>
Chapter 3

Administrative Considerations

This chapter addresses the overall considerations for the administration of the testing and deployment of ADS-equipped vehicles and vehicles with ADAS. There are 11 recommendations in the following two subsections: 9 recommendations directed to jurisdictions for implementation consideration and 2 directed to MOEs.

3.1 Administration

Background

To successfully address the safe integration of ADS-equipped vehicles within the transportation system, a collaborative approach should be taken among jurisdictions and stakeholders to gain an understanding of emerging vehicle technologies and the impact to roadway safety, jurisdictional programs, and infrastructure.

Guidelines for Testing Automated Driving System–Equipped Vehicles

A lead agency should be identified within each jurisdiction to address ADS-equipped vehicle testing and deployment within its borders. The lead agency should be charged with establishing a jurisdictional ADS-equipped vehicle committee. The committee should include, but may not be limited to, representatives from the:

- governor’s or chief executive’s office;
- legislature;
- motor vehicle administration;
- department of transportation;
- jurisdiction law enforcement agency;
- office of highway safety;
- office of information technology;
- insurance regulator;
- agency representing the aging and disabled community;
- agency that regulates taxis and rideshare companies
- toll authorities;
- transit authorities; and
- local government.

Other stakeholders such as transportation research centers located within the jurisdiction and groups representing pedestrians and bicyclists should be consulted as appropriate. Communication with the ADS-equipped vehicle manufacturing industry is encouraged.

The jurisdiction’s ADS-equipped vehicle committee should develop strategies for addressing the testing and deployment of such vehicles in their jurisdiction. There are a range of strategies to consider from addressing testing without active regulation to testing with regulation by policy or statute.

Jurisdictions will need to examine their laws and regulations to address unnecessary barriers to safe testing, deployment, and operation of ADS-equipped vehicles in the areas of:

- licensing and registration;

The designated lead agency should keep its ADS-equipped vehicle committee informed of requests from manufacturers and other entities to test in their jurisdiction and the status of the designated agency’s response.

Several national associations are engaged in the discussion on ADS-equipped vehicles and are available for additional support to jurisdictional government officials. These include, but are not limited to AAMVA, American Association of State Highway and Transportation Officials (AASHTO), Canadian Council of Motor Transport Administrators (CCMTA), Council of State Governments (CSG), National Conference of State Legislatures (NCSL), Governors Highway Safety Association (GHSA), National Governors Association (NGA), and Commercial Vehicle Safety Alliance (CVSA).

As technologies emerge, regulators and legislators will need to continuously advance their knowledge, staying abreast of relevant reports and studies,
attending ADS-equipped vehicle forums, and engaging with industry. This knowledge will help officials recognize when laws, rules, and policies are outdated or proposed prematurely.

Recommendations for Jurisdictions

3.1.1. Identify a lead agency to manage the ADS-equipped vehicle committee and its efforts.

3.1.2. Establish an ADS-equipped vehicle committee.

3.1.3. Develop strategies for addressing testing and deployment of ADS-equipped vehicles in the jurisdiction.

3.1.4. Examine jurisdictional laws and regulations to consider barriers to safe testing, deployment, and operation of ADS-equipped vehicles.

3.1.5. Jurisdictions that regulate the testing of ADS-equipped vehicles are encouraged to take necessary steps to establish statutory authority and to use NHTSA’s *Automated Driving Systems: A Vision for Safety 2.0* and *Preparing for the Future of Transportation: Automated Vehicles 3.0*, *Ensuring American Leadership in Automated Vehicle Technologies: Automated Vehicles 4.0* published in January 2020, and later updates to frame the regulations.

3.1.6. ADS-equipped vehicle committee members, regulators, and legislators are encouraged to perform knowledge-gathering and information-sharing functions.

3.1.7. The lead agency should designate an AV lead staff member.

3.1.8. The motor vehicle agency (MVA) should also designate an AV lead staff person if the agency is not the jurisdictional lead AV agency. As the jurisdiction becomes more engaged in the regulation of ADS-equipped vehicles, the lead person may eventually become dedicated to the project. Therefore, funding may be needed in the future for a dedicated position.

Recommendations for Manufacturers and Other Entities

MOE 1. Manufacturers and other entities should interact with and respond to jurisdictional ADS-equipped vehicle committee questions and requests.

Benefits to Implementation

By establishing a lead agency and an ADS-equipped vehicle committee, jurisdictions optimize collaboration among stakeholders as they become informed of the technologies and as they explore options for the safe testing and deployment of ADS-equipped vehicles. Awareness will assist officials to recognize when and how regulations will need to be developed and updated. A lead agency can provide the appropriate level of government oversight with flexibility to quickly modify regulations if needed. A flexible and consistent approach is beneficial to regulators and supports innovation within the industry.

Challenges to Implementation

Finding the right balance between ensuring roadway safety while supporting technological advancements through the development and testing phases of ADS-equipped vehicles is a challenge. Thorough review of jurisdictional laws and rules to ensure the safe testing of ADS-equipped vehicles in as many situations as possible, including testing without a driver, will require a resource commitment by jurisdictions.
3.2 Advanced Driver-Assistance Systems

Background

ADAS are designed to help drivers with certain driving tasks (e.g., staying in the lane, parking, avoiding crashes, reducing blind spots, and maintaining a safe headway). ADAS are generally designed to improve safety or reduce the workload on the driver. With respect to automation, some ADAS features could be considered SAE Level 1 or Level 2, but many are Level 0 and may provide alerts to the driver with little or no automation. ADAS may also be found in vehicles with higher levels of automation.

There is a lack of consistency among manufacturers, organizations, legislators, and stakeholders in the naming of ADAS terminology, the indicators for the specific technology in vehicles, and how the technology works. This inconsistency can confuse drivers and other stakeholders when discussing, researching, and using ADAS technology.

There are currently efforts to minimize the lack of consistency in ADAS terminology. MyCarDoesWhat.org (https://mycardoeswhat.org) through the National Safety Council and the University of Iowa currently uses terminology for ADAS which are not specific to any one manufacturer. AAA recently released a document Advanced Driver Assistance Technology Names and has an initiative for manufacturers, safety organizations, and legislators to use consistent technology terminology. In the document found at this link found at https://www.aaa.com/AAA/common/AAR/files/ADAS-Technology-Names-Research-Report.pdf, AAA proposes a set of standardized technology terminology.

Drivers need to understand how to use ADAS technology in their vehicles. If drivers are confused, they may turn it off, not use it as intended, use it beyond its limitations, or over rely on it. To reduce confusion among the general public, manufacturers, organizations, and legislators should adopt consistent terminology for ADAS. The terminology needs to be simple to understand and based on the function of the technology. AAMVA is engaged in national efforts to support consistency in ADAS terminology.

The Automated Vehicles Subcommittee is partnering with the AAMVA Test Maintenance Subcommittee (TMS) and other organizations to update model driver’s manuals, knowledge tests, and skills tests. The Automated Vehicles Subcommittee is also assisting the AAMVA International Driver Examiner Certification (IDEC) Board in updating the driver’s license examiner training materials to address emerging vehicle technology.

In the interim, the TMS and IDEC along with the AAMVA Automated Vehicles Subcommittee, developed Guidelines for Testing Drivers in Vehicles with Advanced Driver Assistance Systems. It is intended to assist members as they review and update their driver examination policies and procedures to address new vehicle technologies. It outlines technologies and implications for testing and provides recommendations for testing procedures and examiner
training. Additional information about this guide and the impact of ADAS on driver licensing programs can be found in Chapter 5.

Recommendations for Jurisdictions

3.2.1. Use consistent terminology to describe ADAS technology in vehicles as national standards are developed.

Recommendations for Manufacturers and Other Entities

MOE 2. Manufacturers and other entities should adopt consistent terminology to describe ADAS technology in vehicles.

Benefits to Implementation

By using consistent terminology drivers and other stakeholders can clearly understand the ADAS technology being referred to and therefore can ensure they are discussing, researching, and using the technology correctly.

Challenges to Implementation

Currently, there is a lack of consistency and it will be difficult for manufacturers, organizations, legislators, and other stakeholders to change the terminology currently being used.
This chapter addresses vehicle-related topics such as permits to test, registration and titling, inspection, and safety standards for the testing and deployment of ADS-equipped vehicles. There are 36 recommendations in the following 10 subsections: 33 recommendations directed to jurisdictions for implementation consideration and 3 directed to MOEs.

4.1 Application and Permit for Manufacturers and Other Entities to Test Vehicles on Public Roadways

Background

Several jurisdictions have enacted statutes and rules that give qualifying manufacturers and other entities authority to test ADS-equipped vehicles on public roadways. What follows is a recommended framework to achieve consistency among jurisdictions that opt to require a permit for testing ADS-equipped vehicles, including passenger vehicles, low-speed shuttles, fleet-owned vehicles, and commercial vehicles. The elements that compose the following framework reflect the need for jurisdictions to ensure safety is the foremost concern in permitting the testing of ADS-equipped vehicles.

Guidelines for Testing Vehicles

Manufacturers and other entities testing ADS-equipped vehicles should apply for and be issued vehicle-specific test permits before testing on public roadways.

The application process for test permits is intended to provide sufficient background information for jurisdiction and law enforcement personnel to interact with the manufacturer and its vehicle(s). In situations when a jurisdiction has opted to establish a program that allows testing, relevant jurisdiction and local officials, including law enforcement, should be made aware of who, how, where, and what testing is being conducted. With this information, officials will be better prepared to ensure safety is prioritized during testing and respond appropriately when there is a crash or incident. It is recommended the permit application process include the completion or attachment of all of the following information:

- Name of manufacturer or other entity
- Corporate physical and mailing addresses of manufacturer or other entity
- In-jurisdiction physical and mailing addresses of manufacturer or other entity, if different than corporate address
- Program administrator or director
- Contact information for program administrator or director
- Vehicle-specific information for all vehicles to be permitted, including
 - Vehicle identification number (VIN)
 - Year (if assigned by the manufacturer)
 - Make (if assigned by the manufacturer)
 - Model (if assigned by the manufacturer)
 - License plate number and jurisdiction of issuance (if applicable)
- Indication of intention for testing with or without a human controlling the vehicle from within the vehicle and SAE level if testing without a human driver
- Vehicle type (passenger, commercial, low speed, and so on)
- List of all drivers of ADS-equipped vehicles, including:
 - Full name
 - Date of birth
 - Driver’s license number and jurisdiction or country of issuance
- Summary of training provided to employees, contractors, or other persons designated by the manufacturer or other entity as drivers of test vehicles
- Disclosure of all jurisdictions where application or issuance of testing registration permits has occurred or been denied
- Disclosure of all jurisdictions where testing is or has occurred and an application or permit was not required
- Self-certification of prior testing of the technology to be used in the test vehicles under controlled conditions that simulate the real-world conditions (various weather, types of roads, and times of the day and night) the manufacturer intends to subject the vehicle to on public roadways
- Certification from the manufacturers and other entities testing ADS-equipped vehicles within the jurisdiction that the vehicles comply with all applicable Federal Motor Vehicle Safety Standards (FMVSS) or Canadian Motor Vehicle Safety Standards (CMVSS) and no required safety devices have been made inoperable; in lieu of the certification, evidence the vehicle(s) received an exemption or waiver from the FMVSS or CMVSS (see Section 4.9)
- Copy of manufacturer’s safety plan for testing vehicles, including a minimal risk condition component
- Routes to be used when testing ADS-equipped vehicles without a human controlling the vehicle from within the vehicle (if applicable)
- Evidence of the manufacturer’s ability to respond to damages for personal injury, death, or property damage caused by a vehicle during testing; evidence may be in the form as approved by the jurisdiction (e.g., an instrument of insurance, a surety bond, proof of self-insurance)
- Plan for sharing crash data relevant to the vehicle and driver when the incident occurred

Such permits should be valid in the jurisdiction of issuance only. Each permit, subject to periodic renewal, should contain the following information:

- owner name;
- mailing and physical addresses;
- emergency contact information;
- jurisdiction specific limitations (e.g., geographic, environmental);
- VIN;
- year of vehicle (if assigned by the manufacturer);
- make of vehicle (if assigned by the manufacturer);
- model of vehicle (if assigned by the manufacturer);
- vehicle type (passenger, commercial, low-speed, and so on); and
- indication of permit holder’s intention for testing with or without a human controlling the vehicle and the SAE level. If testing with a human driver, indicate whether the driver is in the vehicle or controlling the vehicle remotely.
In jurisdictions where manufacturer or other entity-owned vehicles are required to be individually registered, the permit information should be available for verification at time of vehicle registration issuance (new and renewal) either by presentation from the holder or through electronic means. If at any time such a permit is no longer valid, the associated vehicle registration should become void.

Test registration permits should be carried in the test vehicle while present on public roadways until or unless an electronic process has been created by jurisdictions that will allow permit information to be made readily available to law enforcement. Jurisdictions should move toward providing electronic access to permit information.

Recommendations for Jurisdictions

4.1.1. Require all manufacturers and other entities testing ADS-equipped vehicles to apply for and be issued vehicle specific permits before testing on public roadways.

4.1.2. Establish a test registration permit application process for ADS-equipped vehicles that does not create unnecessary barriers for manufacturers and other entities and requires the completion or attachment of the information listed in Section 4.1.

4.1.3. Implement a process for denying an application, as well as an appeal process for applicants or permittees whose applications have been denied.

4.1.4. Require test registration permit information be available for verification at the time of vehicle registration issuance (new and renewal) either by presentation from the holder or through electronic means in jurisdictions where manufacturer or other entity-owned vehicles are required to be individually registered.

4.1.5. Require test registration permits to be carried in the test vehicle while present on public roadways until or unless an electronic process has been created by jurisdictions that will allow permit information to be made readily available to law enforcement.

Guidelines for Deployed Vehicles

Deployed vehicles are not subject to permit issuance.

Benefits of Implementation

ADS-equipped vehicles tested on public roadways will meet minimum testing requirements before authorized operation. In addition, authority granted for on-road testing will be identifiable to law enforcement and MVAs.

Finally, jurisdiction and local officials will have increased awareness of ADS-equipped vehicles through the sharing of permit and testing information. This includes where, when, and by whom testing was conducted as well as the number and types of vehicles tested and if involved in any incidents or crashes. These data elements are valuable when providing information to other government officials and agencies, the public, industry, the media, and other interested stakeholders.

Challenges to Implementation

Some manufacturers may indicate permit issuance is burdensome and not necessary if vehicles being operated are properly registered or plated.

4.2 Actions on Permit Process

Background

Jurisdictions have significant flexibility in establishing a permitting process as described in Section 4.1. However, although provisions of the permitting process may vary significantly among jurisdictions, public trust and the integrity require a means to enforce any conditions imposed on the testing entity.
Guidelines for Testing Vehicles

The jurisdiction should have the authority to fine, suspend, or revoke any permit to test on public roads if permit holders violate permit or safety conditions, as well as the ability to deny renewal of an application. The jurisdictions should also consider the imposition of further penalties if the testing entity continues to operate or test in violation of that suspension or revocation. Jurisdictions should establish a process for reporting traffic law violations to the permit issuing agency.

When creating grounds for suspension, revocation, and fines, jurisdictions should consider:

- incorrect information supplied on the application or documentation pertaining to the application;
- failure to maintain financial responsibility;
- failure to follow the jurisdictions laws regarding testing;
- the ADS and the manufacturer are subject to an investigation by any law enforcement, licensing, or permitting agency; the US Department of Transportation; or any other federal government agency;
- failure to follow the rules of the road;
- failure to timely file required reports with the jurisdiction; and
- failure to properly monitor its drivers, either as to their driver record or actions on the road.

Jurisdictions should also set forth an appeal process from any action taken against a manufacturer or other entity.

Recommendations for Jurisdictions

4.2.1 Develop provisions for suspension, revocation, or fining of any permit holder to test on public roads if permit holders violate permit conditions and for reporting such actions to the jurisdiction’s lead law enforcement agency.

4.2.2 Consider the imposition of penalties if the testing entity continues to operate or test in violation of a suspension or revocation order.

4.2.3 Establish a process for reporting traffic law violations to the permit issuing agency.

4.2.4 Have an appeal process for administrative actions taken against a manufacturer or other entity.

Guidelines for Deployed Vehicles

It is expected regulations developed to ensure safety during testing would not be applicable to deployed vehicles. These vehicles may have been adequately tested, evaluated, and certified for safety and compliance with FMVSS or CMVSS.

Benefits of Implementation

By enforcing permit compliance, public safety and the integrity of the permitting process are improved. The purpose of the permitting process is to ensure safety during development. But issuing a permit alone does not ensure safety if a permit holder is not held accountable to the conditions of the permit (i.e., background checks, operating in school zones). There must be ramifications for violating the conditions of the permit to ensure integrity in the testing process.

Challenges to Implementation

Manufacturers may view any permitting process as an impediment to their ability to test and develop ADS-equipped vehicle technology. Jurisdictions may lack the resources to monitor and enforce provisions of its permitting process and may find responding to manufacturers’ appeals time consuming.
4.3 Automated Driving System–Equipped Vehicle Information on the Manufacturer’s Certificate of Origin and Manufacturer’s Statement of Origin

Background

Manufacturer’s Certificate of Origin (MCO) and Manufacturer’s Statement of Origin (MSO) documents are used by the vast majority of jurisdictions during the titling and registering process of a new motor vehicle. In Canada, jurisdictions use an equivalent document referred to as the New Vehicle Information Statement (NVIS). The MCO, MSO, or NVIS format is not governed by federal statute or rule; however, most jurisdictions have statutes or rules governing their appearance, content, and acceptance. AAMVA provides jurisdictions and manufacturers with general guidance through AAMVA policy positions to promote uniformity among jurisdictions.

Typically, the MCO, MSO, or NVIS contains, at a minimum, the issue date of certificate, control or certificate number, VIN, model, make, series or model, and body style. Furthermore, MCOs, MSOs, and NVISs list engine horsepower, engine displacement or number of cylinders, gross vehicle weight rating (GVWR), and shipping weight, as well as the manufacturer’s name and address and the dealership name and address where the vehicle was initially delivered. The back of the document contains sales reassignment areas for the purchaser (whether a retail customer or a subsequent dealer). MCOs, MSOs, and NVISs are generated on security paper similar to jurisdictional title stock.

Guidelines for Testing Vehicles

Manufacturer test vehicles are often not titled. As such, the lack of MCO and MSO documents with ADS-related information will not impact test vehicles in most jurisdictions. However, some jurisdictions have chosen to title test vehicles. In these instances, the jurisdictions have relied on self-reporting during the permitting process in lieu of MCO and MSO documents during the titling process. For instance, California requires the titling of a test vehicle when used in the automated vehicle testing (AVT) program, which ensures the proper tracking and eventual disposal of the vehicle when no longer used for testing.

Recommendations for Jurisdictions

4.3.1. Jurisdictions should not initiate a process for titling test vehicles if the jurisdiction does not already require this protocol.

Guidelines for Deployed Vehicles

AAMVA supports NHTSA’s *Preparing for the Future of Transportation: Automated Vehicles 3.0* recommendation that various levels of government and private industry continue to collaborate and cooperate in meeting identification goals for ADS-equipped vehicles entering the marketplace. Developing a process for identifying ADS-equipped vehicle functionality through the VIN directly from the manufacturer is crucial to meeting this goal; however, it will require NHTSA to make rule changes to VIN requirements. In conjunction with a VIN identifier or because of the lack of a VIN identifier, it is recommended vehicle manufacturers indicate “Automated Driving System” on the MCO, MSO, or NVIS. This information should be listed in a new field on the MCO, MSO, or NVIS to avoid confusion with existing content.

Recommendations for Manufacturers and Other Entities

MOE 3. Vehicle manufacturers should indicate it is an ADS-equipped vehicle on the MCO, MSO, or NVIS. This functionality should be listed in a new field on the MCO, MSO, or NVIS to avoid confusion with existing information.
Benefits of Implementation

Using information from a MCO, MSO, or NVIS provides each MVA with certainty that the manufacturer has certified the vehicle includes ADS functionality. Additionally, this information would be available to every jurisdiction in the same format.

Challenges to Implementation

Changing VIN requirements will involve NHTSA adopting a rule change, and some jurisdictions will require software changes to accommodate changes in VIN.

4.4 Titling and Branding for New and Aftermarket Automated Driving System–Equipped Vehicles

Background

Although much has been written about ADS-equipped vehicles, there has been limited dialogue on titling and branding of such vehicles. Even though jurisdictions may choose to take a “wait and see” approach on some issues, titling and branding is one subject jurisdictions can and should be considering now.

Guidelines for Testing Vehicles

Generally, jurisdictions do not require titling of a motor vehicle until it has been sold. There is no reason to change this practice for ADS-equipped vehicles.

However, to better track ADS-equipped vehicles used for testing, jurisdictions should record and maintain the vehicle information in their vehicle records. Jurisdictions can achieve this either through the normal titling process, through a titling exception process unique to ADS-equipped vehicles, or by recording relevant information in the registration record without titling.

Storing information, such as the VIN and an ADS brand, whether through titling or some other method devised by the jurisdiction:

- provides pertinent information to stakeholders in case of a crash;
- ensures ownership transfer of the vehicle will be within its laws or policies depending on how a jurisdiction wants to treat a post-test vehicle;
- provides information to the National Motor Vehicle Title Information System (NMVTIS) so the status of the vehicle is readily available to other jurisdictions; and
- provides pertinent information to law enforcement.

If a jurisdiction chooses to title an ADS-equipped vehicle during testing, the title should carry the brand “Automated Driving System.”

Recommendations for Jurisdictions

4.4.1. Record and maintain the test vehicle information in the vehicle record through the normal titling process, through a titling exception process unique to ADS-equipped vehicles or recording vital information in the database without titling. If a jurisdiction titles an ADS-equipped vehicle used for testing, the brand should indicate “Automated Driving System.”

1 Unless information is accessible to all MVA employees, a post-test vehicle may be transferred contrary to the jurisdiction’s laws or policies.
2 California restricts the transfer to (1) a manufacturer holding a valid autonomous vehicle Manufacturer’s Testing permit or (2) a manufacturer wishing to dispose of the vehicle with a Non-repairable Vehicle Certificate. In the second case, ownership must be transferred to an auto dismantler, or the vehicle must be transferred to an educational or research institution or museum for display or study (California Code of Regulations §227.54). It is recommended that jurisdictions follow California’s lead or brand the vehicle junk. However, without the AVT branding, a jurisdiction would not have the knowledge to subsequently place the appropriate brand on the vehicle.
3 If NMVTIS does not recognize automated branding, it is still important for jurisdictions to be able to distinguish automated from non-automated vehicles.
Guidelines for Deployed Vehicles

All deployed ADS-equipped vehicles should be titled pursuant to the jurisdiction’s laws or policies and the title should be branded “Automated Driving System.” Uniform language, referenced in Section 4.5, is recommended for proper disclosure from jurisdiction to jurisdiction. This guideline is especially significant if exemptions are created for activities currently prohibited (e.g., driving without a license if suspended or revoked privilege; issues related to medical fitness, texting, cell phone use, or display screen content streaming).

For vehicles not equipped with automated technologies by the OEM, branding of vehicles with aftermarket-altered automated technologies is recommended. In many jurisdictions, when a vehicle is significantly altered with aftermarket components or the vehicle no longer physically represents the manufacturer’s vehicle, a vehicle title record is branded as “reconstructed.” Vehicles that have had a Tier 1 supplier or an aftermarket company alter the vehicle with automated technologies enabling ADS-equipped vehicle functionality should be identified and branded “Automated Driving System” for law enforcement and MVAs.

Recommendations for Jurisdictions

4.4.2. Title all ADS-equipped vehicles, pursuant to the jurisdiction’s laws or policies; each title should be branded “Automated Driving System.”

4.4.3. Titles for vehicles with added aftermarket components enabling ADS-equipped vehicle functionality should also be branded “Automated Driving System.”

4.4.4. For consistent jurisdictional title branding, it is recommended the OEM or the installer of the aftermarket automated technology (either parts or software) be required to notify the MVA when a motor vehicle has been altered by adding or removing an AV system.

Recommendations for Manufacturers and Other Entities

MOE 4. The OEM or the installer of the aftermarket automated technology, either parts or software systems, should notify the MVA when a motor vehicle has been altered by adding or removing an AV technology.

Benefits of Implementation

Traditionally, jurisdictions have used title branding as a mechanism to identity unique events or qualities that impact the value or safety aspects of a vehicle. Using a proven and existing process to identify ADS-equipped vehicles will ease implementation and adoptability for jurisdictions. Disclosure via title branding allows law enforcement, MVA personnel, and other stakeholders the ability to better identify ADS-equipped vehicles. Additionally, title branding will provide a mechanism for sharing the information between jurisdictions until a national solution, such as a VIN indicator, becomes available.

Challenges to Implementation

Each jurisdiction has its own unique method of titling and registering vehicles. There is no one guideline that will fit all jurisdictional processes.

Titling and registration are closely linked. When jurisdictions are considering how to manage titling, they should also review their registration process. See Section 4.5. As technology progresses and the availability of aftermarket automation products increases, the level of autonomy of a registered vehicle may change over time. Vehicle software updates or upgrades may complicate the titling process, such as increasing the level of automation or decreasing the level of automation. Neither the MCO nor the VIN currently provides an ADS-equipped vehicle identifier. The Automated Vehicles Subcommittee will continue to explore this topic.
Special Considerations

With the increased technological functionality of these vehicles, jurisdictions may need to consider new types of requirements for ADS-equipped vehicles such as the repair of vehicles returning to road use after severe crashes. ADS-equipped vehicles involved in severe crashes may require evaluation and certification by the manufacturers’ authorized repair technicians before being authorized to return to service or for appropriate title branding purposes.

4.5 Vehicle Registration

Background

Vehicle registration credentials and records are basic tools that enable identification of a vehicle and its owner. As testing and deployment of ADS-equipped vehicles expand, the need for owner and vehicle information is necessary to distinguish these vehicles in mixed-fleet operations. Several jurisdictions already require the use of special registrations for ADS-equipped vehicles tested on public roadways.

Guidelines for Testing Vehicles

A jurisdiction that titles ADS-equipped vehicles used for testing should register these vehicles in a manner consistent with its titling process for ADS-equipped vehicles, which could be its normal titling process or titling exception process unique to ADS-equipped vehicles. If a jurisdiction chooses not to title ADS-equipped vehicles during testing, the jurisdiction should record vital information in the registration record.

The registration record should indicate “Automated Driving System.” These notations should appear on the vehicle registration credential and electronic record. Jurisdictions should also consider using a separate field for such notation.

The registration, title, and plate issued by the titling jurisdiction for purposes of ADS-equipped vehicle testing should be recognized by other jurisdictions to offer manufacturers process efficiencies and enhance interjurisdictional testing.

Recommendations for Jurisdictions

4.5.1. Record and maintain test vehicle information in the vehicle record through the normal registration process, through a registration exception process unique to ADS-equipped vehicles or recording vital information in the database without titling.

4.5.2. Establish uniform language that will benefit law enforcement, the MVA, and other stakeholders for testing ADS-equipped vehicles. Use “Automated Driving System” on the vehicle registration record.

4.5.3. Recognize the registration, title, and plate issued by another titling jurisdiction for purposes of testing.

Guidelines for Deployed Vehicles

Uniform language should be established to aid law enforcement, the MVA, and other stakeholders in identifying these vehicles. Such language should use the common terminology “Automated Driving System.”

Additionally, jurisdictions should consider using a separate field for this notation (review AAMVA’s Best Practice for Registration Credentialing for suggestions on open fields). See Section 4.4 for more information.

Recommendations for Jurisdictions

4.5.4. Establish a field on the registration credential or record for deployed vehicles that indicates “Automated Driving System” for motor vehicles with ADS. See Section 4.4 for more information.

4.5.5. Establish uniform language to aid law enforcement, the MVA, and other stakeholders. Use “Automated Driving System” on the vehicle record.

Benefits of Implementation

Disclosure of a vehicle as an ADS-equipped vehicle on the registration credential allows law enforcement to identify vehicles quickly and accurately during a traffic stop or at a vehicle crash scene. Additionally, the ADS-equipped vehicle notation can be maintained until a national solution, such as a VIN indicator, is established. See references for Section 4.3.

The ADS-equipped vehicle indicator on registration records also improves ADS-equipped vehicle summary data reporting. This could include total number of ADS-equipped vehicles registered in each jurisdiction and number of such vehicles involved in crashes and violations. These data can be useful when analyzing the impacts of ADS-equipped vehicle highway safety statistics, adoption rates, and revenue projections.

Challenges to Implementation

Registration and titling are closely linked. When jurisdictions are considering how to manage registrations, they should also review their titling process. See Section 4.4. As technology progresses and the availability of aftermarket automation products increases, the level of autonomy of a registered vehicle may change over time. Vehicle software updates or upgrades may complicate the registration process, such as increasing the level of automation or decreasing the level of automation. The MCO, MSO, NVIS, and VIN currently do not provide an ADS-equipped vehicle identifier.

4.6 License Plates

Background

License plates serve a common purpose—to identify motor vehicles. Any jurisdiction that adopts a license plate design specifically for ADS-equipped vehicles should design the plates for automated license plate readers (ALPRs) and optimal legibility to the human eye. The ability for MVA employees, police officers, tolling authorities, and citizens to identify license plate numbers quickly and easily is fundamental to accurate vehicle registration data creation, maintenance, retrieval, and eyewitness reporting.

Guidelines for Testing and Deployed Vehicles

Special license plates for ADS-equipped vehicles should not be required. If a jurisdiction does choose to require special license plates for ADS-equipped vehicles, the plates should adopt the administrative, design, and manufacturing specifications contained in the AAMVA License Plate Standard.

Recommendations for Jurisdictions

4.6.1. Jurisdictions should not require a special license plate for ADS-equipped vehicles. However, if a jurisdiction chooses to require a special license plate for ADS-equipped vehicles, the plates should adopt the administrative, design, and manufacturing specifications contained in the AAMVA License Plate Standard.

Benefits of Implementation

There is limited benefit for implementing a special license plate for ADS-equipped vehicles as long as the jurisdiction follows the recommendation on registration credential notation from Section 4.5.

Challenges to Implementation

Challenges in implementing a new license plate design include the identification of the jurisdiction of issuance; discernibility of the plate design from others it issues; and cost if there is special significance to the license plate design, as in the design for an ADS-equipped vehicle license plate.
4.7 Financial Responsibility (Also Known as Mandatory Liability Insurance)

Background

An important element of the administration and regulation of ADS-equipped vehicles is ensuring adequate insurance in place to protect not only the occupants of an ADS-equipped vehicle but also other road users. For example, many jurisdictions require minimum financial responsibility, also known as mandatory liability insurance requirements, for each vehicle operating on public roads. Also, Federal Motor Carrier Safety Administration (FMCSA) regulations require specified liability insurance levels for commercial vehicles over 10,000 pounds, those transporting hazardous materials, and passenger carriers (buses).

Motor vehicle regulators should monitor the legal trends ensuring limits stay relevant and appropriate. It is advisable that there be sufficient coverage available for third-party liability in jurisdictional scenarios where there is no explicit distinction in property damage versus personal injury.

Jurisdictions with higher liability insurance requirements for vehicles used today for public transportation should give special consideration to liability insurance requirements for test vehicles that are designed and manufactured to provide similar transportation services. These vehicles are often built to accommodate a minimum of eight passengers.

Guidelines for Testing Vehicles

Different liability insurance requirements among jurisdictions can create incentives for ADS-equipped vehicle testing where the liability insurance requirement is the lowest. The increase in commercial motor vehicle ADS-equipped vehicle testing interest has some jurisdictions considering if the potential for high risk or greater damage in a crash necessitates higher limits for liability insurance.

However, all ADS-equipped vehicles permitted for on-road testing should be required to have at least minimum liability insurance in the form and manner required by the jurisdiction and FMCSA regulations.

Additionally, jurisdictions may want to consider requirements for commercial vehicles not covered by the federal regulations 49 CFR §387.9 that are distinctive from requirements for personal and private vehicles.

Recommendations for Jurisdictions

4.7.1 Require all ADS-equipped vehicles permitted for on-road testing to have at a minimum liability insurance in the form and manner required by the jurisdiction and FMCSA regulations.

4.7.2 Consider minimum liability insurance requirements for commercial vehicles not covered by the federal regulations that are distinctive from the requirements for personal and private vehicles.

4.7.3 Jurisdictions with higher liability insurance requirements for vehicles used for public transportation today should give special consideration to liability insurance requirements for test vehicles that are designed and manufactured to provide similar transportation services.

Guidelines for Deployed Vehicles

At a minimum, liability insurance requirements should follow current jurisdictional and federal requirements. It is premature to provide additional specific guidance on deployed ADS-equipped vehicles as so much is still unknown. There are many factors to consider as the development of these vehicles progresses, including but not limited to the following:

- While a vehicle is in the testing phase, liability insurance responsibility is clearer than in the deployment stage.
For deployed vehicles, consider all of the issues related to determining the responsible party. Should liability be transferred wholly or in part to the driver, the manufacturer, the systems developers, or a third-party installer? In the event of a commercial setting, such as a car-sharing situation, the issue becomes even more complicated.

Additional consideration must be given to when a public or semi-public entity has purchased a vehicle for use by drivers, irrespective of whether the drivers are paying for this use.

Consideration should also be given to liability insurance requirements for commercial vehicles not covered by the federal regulations that are distinctive from rates for personal or private vehicles.

It is unknown if the risks associated with ADS-equipped vehicles is lower or greater than the risks with traditional vehicles.

Recommendations for Jurisdictions

4.7.4. Although it is premature to provide specific insurance liability recommendations to jurisdictions, it is not too early for jurisdictions to start considering the new challenges described above when establishing minimum insurance liability on deployed ADS-equipped vehicles.

4.7.5. Consider whether the owner, manufacturer, after-market installer, or some other person or entity will be the required insured with responsibility for liability insurance.

4.7.6. Consider when a public or semi-public entity has purchased a vehicle for use by drivers, irrespective of whether the drivers are paying for this use.

4.7.7. Consider liability insurance requirements for commercial vehicles not covered by the federal regulations that are distinctive from rates for personal or private vehicles.

Benefits of Implementation

Requiring at least a minimum liability insurance level for ADS-equipped vehicles provides consistency between non-ADS vehicles currently in operation and ADS-equipped vehicles. Furthermore, the public will be given some assurance that companies interacting on the public roadways are testing and operating in a responsible manner.

Challenges to Implementation

It is premature to determine the appropriate minimum limits to set for deployed ADS-equipped vehicles because there are so many outstanding unknowns such as which entity should be liable and how to determine the risk associated with an ADS-equipped vehicle as opposed to a conventional vehicle.

4.8 Jurisdictional Approval of the Automated Driving System as the Driver

Note: This section includes recommendations related to the jurisdictional approval of ADS-equipped vehicles for deployment and is closely related to Section 4.10, which examines the issue of periodic vehicle safety inspection programs as they relate to ADS-equipped vehicles.

Background

A persistent issue is whether jurisdictions should be responsible for approving the ADS technology prior to deployment. In the absence of a national regulatory structure, jurisdictions have the dilemma of approving the testing of ADS-equipped vehicles on public roadways without assurance that they meet a minimum federal standard of safety. Here are a few examples of approaches jurisdictions have taken:

4 This decision should not abrogate any product liability responsibly on the part of the manufacturer.
California law requires an application to be submitted and approved for the safe operation on California roadways. As a result, California Department of Motor Vehicles (DMV) initially explored developing a third-party verification system for these new technologies during their first rule making process. California shifted direction to a self-certification process.

The Colorado State Patrol (CSP) has conducted basic safety assessments on ADS-equipped vehicles that have been tested on Colorado’s public roadways. These safety assessments did not probe proprietary software but verified that the vehicles were configured with equipment such as lighting, steering, braking, suspension, and collision avoidance systems that enabled the vehicles to navigate various scenarios on public roadways. During the assessments, the CSP additionally verified that when the vehicles were in motion under their own power, they maintained basic lane position and speed, and they reacted to objects in their path of travel.

Rhode Island requires a general safety inspection along with a safety self-certification from the entity conducting a pilot but does not approve the ADS.

Other ideas have focused on requiring ADS skills testing and therefore possible future licensure of the system before deployment approval of ADS-equipped vehicles for public use. This topic has been raised in the US Department of Transportation’s guidance on Automated Vehicles (https://www.transportation.gov/AV) in particular in the NHTSA’s Automated Driving Systems: A Vision for Safety 2.0, Validation Methods section, as well as the section Best Practices for Legislatures and Preparing for the Future of Transportation: Automated Vehicles 3.0, State, Local, and Tribal Governments and Automation section.

The Uniform Law Commission (ULC) has a different consideration in its model state legislation. A key component of the recommended model legislation is the creation of “an Automated Driving Provider” designation. An Automated Driving Provider would “vouch” (or more appropriately, self-certify) for the ADS functionality and performance (not unlike what is envisioned by NHTSA). An entity would identify itself as responsible for the “performance” of the ADS and would validate its development and functionality before it would offer to register as the Automated Driving Provider for the vehicle or system. The ULC’s report published in 2-19 Automated Operations of Vehicles Act can be found at https://www.uniformlaws.org/viewdocument/committee-archive-112?CommunityKey=4e70cf8e-a3f4-4c55-9d27-fb3e2ab241d6.

Although ADS licensure or skills testing before approval has been considered in discussions of public safety, the recommendation has practical limitations, such as what to test for, how to test, and who conducts the testing. Creating a series of recommended skills an ADS should perform would not guarantee ADS is ready for open deployment, nor would it provide assurance of continuous safe function in a normal and changing environment.

The counter argument is that an ADS vehicle should be subject to the same expectation jurisdictions place on new drivers, who are required to undergo a structured test in which every new driver faces the...
same number of right and left turns, speed changes, and so forth. However, jurisdictions have varying standards and courses for driver’s skills testing. Some are closed courses, others have public roads with closed portions (parallel parking), and others are on public roads for all components.

Guidelines for Deployment

The working group recommends jurisdictions neither put themselves in the position of approving ADS nor imposing a “skills test” on the ADS or its manufacturer at this time. Doing so could create inconsistencies between jurisdictions unless a national test standard were developed. An ADS-equipped vehicle for sale or use on public roads should follow the existing self-certification process used for other vehicle equipment pending further oversight from the federal government.

The absence of jurisdictional testing of ADS does not preclude development of a federal or third-party certification process. The benefits of creating a third-party certification process would be assurance to the public that an entity has reviewed and assessed the abilities of the product before it is offered for public use.

Benefits of Implementation

There is limited benefit to establishing a state-specific ADS technology approval process or ADS vehicle “skills test” at this time. Not doing so limits inconsistencies between jurisdictions.

Challenges to Implementation

The longstanding delineation of authority for vehicle design and safety rests with the federal government. Skills testing, licensure, and rules of the road compliance rest with the jurisdictions. Jurisdiction skills testing and licensure of an ADS are difficult to implement without federal standards. A jurisdictional certification process at this time could create a false sense of security and create liability for the jurisdiction.

Background

Title 49 of the United States Code, Chapter 301, Motor Vehicle Safety, legislatively mandates NHTSA to issue FMVSS and Regulations to which manufacturers of motor vehicle and equipment items must conform and certify compliance. FMVSS 209 was the first standard to become effective on March 1, 1967. New standards and amendments to existing standards are published in the Federal Register. These federal safety standards establish minimum safety performance requirements for motor vehicles or items of motor vehicle equipment. These requirements are specified in such a manner “that the public is protected against unreasonable risk of crashes occurring as a result of the design, construction or performance of motor vehicles and is also protected against unreasonable risk of death or injury in the event crashes do occur.”

The NHTSA establishes FMVSS, and manufacturers must certify that their motor vehicles comply with all applicable standards. Absent an exemption or exception, vehicles equipped with ADS must comply with all applicable FMVSS.

Generally, there are two types of temporary exemptions available from NHTSA: an import exemption for research, testing, and demonstration (testing exemption) and a deployment exemption. Testing exemptions are currently only available for imported vehicles, and noncompliant vehicles cannot be imported into the United States unless the importer

Guidelines for Testing Vehicles

It is critical that manufacturers or other entities testing ADS-equipped vehicles to ensure that vehicles either comply with all applicable FMVSS or CMVSS or that the manufacturer or importing entity has an exemption for any noncompliant vehicles.

Recommendations for Jurisdictions

4.9.1. Consider requiring manufacturers and other entities testing ADS-equipped vehicles within the jurisdiction to certify the vehicles comply with all applicable FMVSS or CMVSS and that no required safety devices have been made inoperable. In lieu of the certification, require manufacturers to provide evidence the vehicle(s) have received an exemption from the FMVSS or CMVSS.

Benefits of Implementation

ADS-equipped vehicles tested on public roadways and sold to drivers will meet minimum federal safety standards or will have an exemption from the FMVSS or CMVSS, depending on where the vehicle is being tested.

Challenges to Implementation

Some manufacturers, importing entities, or other entities may indicate that FMVSS do not apply to their vehicle technology. Manufacturers or importing entities should provide evidence of an exemption from FMVSS if their vehicles do not comply with FMVSS or CMVSS.

Special Considerations

Jurisdictions need to partner with federal agencies to assist and support the common goal of encouraging technological innovation while increasing safety and mobility.
4.10 Periodic Motor Vehicle Inspections

Background

Some jurisdictions in the United States and Canada require a motor vehicle safety inspection. Typically, under these programs, vehicle owners are responsible for periodically validating the safety of their vehicle’s structure, equipment, and components (including elements such as brakes, lighting, airbags, steering mechanisms, tires, and so on) through a certified inspection station, technician, or mechanic. Jurisdictions that have established these programs are responsible for setting and maintaining minimum operational safety requirements, which in some cases are based on those prescribed by the federal government for the manufacture and sale of new vehicles under the FMVSS and CMVSS. Vehicles that fail to meet minimum requirements cannot be permitted for use on the road until equipment and components are brought into compliance.

The design and application of safety inspection programs vary among jurisdictions, ranging from requiring all vehicles to pass an annual safety and emissions inspection to requiring an inspection upon change of ownership, upon titling in a change state of record, or when an inspection is ordered by law enforcement at roadside. Although these programs differ, inspection initiatives share the common objective of promoting vehicle safety.

The emergence and proliferation of automated and connected technologies may result in a diminished human role in the driving task but does not diminish the expectation that the vehicles are inherently safe. Vehicles will increasingly fulfill safety-critical functions that today are the primary responsibility of human drivers. This greater reliance on vehicle technology raises important questions about the role of jurisdictions, MOEs, and owners in ensuring that automated technology is properly and regularly maintained. This also raises the question of how jurisdictions will ensure safe operation when aftermarket software may change the operating features of a vehicle.

Guidelines for Testing Vehicles

It would be difficult for jurisdictions to establish new inspection requirements for ADS-equipped test vehicles given the experimental nature of new and emerging forms of automated technology.

Furthermore, the federal governments have not yet created FMVSS and CMVSS standards for ADAS and ADS technology. The responsibility for ensuring ADS-equipped test vehicles are safe rests with MOEs and testers.

Recommendations for Jurisdictions

4.10.1. Jurisdictions should not be expected to create new safety inspection programs for ADS-equipped vehicles during the testing stages. A jurisdiction that currently has such a program should apply its same standard.

Recommendations for Manufacturers and Other Entities

MOE 5. Manufacturers and other entities should ensure all technology being tested on public roads is safe.

Guidelines for Deployed Vehicles

Integrating new and emerging technologies into inspection programs is a common occurrence in jurisdictions that use such programs. Existing organizational practices such as using working groups, task forces, and subject matter experts can be leveraged to assist in the integration of ADS technology into inspection programs.

However, given the pace of change in ADS technology, it is likely premature for jurisdictions to develop new inspection and maintenance standards.
for ADS-equipped vehicles, particularly without federal vehicle safety standards for ADS technologies.

Federal and jurisdictional governments should continue to work with manufacturers to understand mechanisms for verifying the safety and active functionality of ADS technology components (e.g., through computer diagnostics) and how vehicle safety might be discernable in the future by trained technicians.

Jurisdictions should regularly review their inspection programs in the context of new and emerging technologies to ensure their inspection programs are up to date.

Recommendations for Jurisdictions

4.10.2. Integrate ADS technology maintenance requirements into inspection programs after federal safety standards have been developed; minimum program requirements should reflect federal safety standards when possible. Support a committee or task force to lead and explore integrating ADS technology into jurisdictions inspection programs.

4.10.3. Jurisdictions should continue to work closely with manufacturers and other entities to understand mechanisms for verifying the safety and functionality of current ADAS and ADS technology components and how safety might be discerned in the future.

Benefits of Implementation

Continuous discussion and consideration of how and ADS technology fit into safety inspection programs supports safe operation in the future. However, many questions remain given the rapid development of ADS technology and lack of federal standards. The Automated Vehicle Subcommittee will continue to explore this topic.
This chapter addresses driver-related topics relative to vehicles with ADAS and ADS-equipped vehicles. Within this chapter, *driver* and *passenger* are defined. Other topics discussed include driver’s license requirements for testing vehicles, remote driver, endorsements and restrictions for deployed vehicles, and driver training for drivers on vehicle technologies as well as educating MVA staff, driver’s license examiners, and driver educators. Commercial Driver Licensing (CDL) is also addressed. There are 61 recommendations in the following 10 subsections: 57 recommendations directed to jurisdictions for implementation consideration and 4 directed to MOEs.

5.1 Driver and Passenger Roles Defined

Background

All stakeholders should use common terminology and definitions for ADS-equipped vehicles to better facilitate discussions. As described in Chapter 2, this report uses SAE International’s definitions. Universal terms and definitions are critical for jurisdictions, manufacturers, and other entities when discussing AV technologies and ADS-equipped vehicles.

Driver – a user who performs in real time part or all of the Dynamic Driving Task (DDT) and DDT fallback for a particular vehicle.

Passenger – a user in a vehicle who has no role in the operation of that vehicle.

It should be noted this report uses the terms “driver.” Although use of the term “operate” or “operating” implies the existence of an “operator,” this term is not defined or used in this document, consistent with SAE International definitions and use of terms.

Recommendations for Jurisdictions

5.1.1. Use the SAE International definitions provided in Chapter 2.

5.1.2. As discussed in Section 3.1, jurisdictions should review the resource *Implications of Automation for Motor Vehicle Codes*, which may be a useful guide for updating laws and regulations.

Recommendations for Manufacturers and Other Entities

MOE 6. Manufacturers and other entities should use the SAE International definitions provided in Chapter 2.

Benefits of Implementation

Universal definitions of these terms will facilitate communication, understanding, and standardization of the roles and responsibilities for ADS-equipped vehicles.

Challenges to Implementation

Educating all entities on the need for acceptance and implementation of these universal terms and definitions will be an implementation challenge. Jurisdictions will need to review their laws and regulations ensuring motor vehicle laws permit the operation of ADS-equipped vehicles Level 4 and 5 without a driver. Legislative action amending statutory and regulatory definitions of “driver” and related terms, as well as reviewing and adapting existing rules regarding vehicle operation may pose challenges until more policymakers are versed in the subject matter.
5.2 Driver’s License Requirements for Testing by Manufacturers and Other Entities

Background

Currently, numerous manufacturers and other entities are testing ADS-equipped vehicles in multiple jurisdictions. It is anticipated that testing will be expanded to include most jurisdictions. This section provides guidelines for testing ADS-equipped vehicles by manufacturers and other entities.

Guidelines for Testing by Manufacturers and Other Entities

ADS-equipped vehicles should be operated solely by employees, contractors, or other persons designated by the MOEs, such as universities involved in testing. Test drivers in ADS-equipped vehicles should receive training and instruction related to, but not limited to, the capabilities and limitations of the vehicle and should be subject to a background check as described in Section 6.3. Training should be documented and submitted to the jurisdiction’s AV lead agency along with other required information. Jurisdictions may need to develop or review and adapt their existing rules for submission of such information and background checks.

Because the design of some Level 4 and 5 ADS-equipped vehicles may not include a driver’s seat or equipment that enables actual physical control of the vehicle’s operations, jurisdictions will need to support the safe testing without a human driver inside the vehicle. In this case, the jurisdiction should require a user designated by the manufacturer or any such entity involved in the driverless testing of the ADS-equipped vehicle, be capable of assuming control of the vehicle’s operations, or require that the ADS has the ability to achieve a minimal risk condition. Mandating these features (e.g., driver’s seat) may conflict with a federally granted exemption and entail changes to the MOE’s design of test vehicles, which is configured differently than those ultimately sold to or used by drivers.

Allowing for the safe testing of ADS-equipped vehicles without a driver’s seat or traditional driver equipment is important to the continued research, design, and ultimately deployment of ADS-equipped vehicles. Testing without federally mandated equipment will require the manufacturer to obtain an exemption from FMVSS from NHTSA.

Jurisdictions will need to take appropriate steps to ensure their motor vehicle laws allow for the testing of ADS-equipped vehicles and for the testing of Level 4 and 5 ADS-equipped vehicles by someone who is not a licensed driver when the vehicle does not require manual fall back to achieve a minimal risk condition. This may require amending statutory and regulatory definitions of “driver” and other related terms.

The guidelines in this section are not relevant to Level 0 to 2 vehicles unless otherwise noted.

Recommendations for Jurisdictions

For ADS-equipped vehicles, the following guidelines are provided:

5.2.1. Review and develop or adapt existing rules, if applicable, regarding vehicle operation to ensure ADS-equipped vehicle testing is permitted.

5.2.2. Require test ADS-equipped vehicles be operated solely by employees, contractors, or other persons designated by the manufacturer of the ADS-equipped vehicle or any such entity involved in the testing of the ADS-equipped vehicle.

5.2.3. Require test drivers to receive training and instruction related to, but not limited to, the capabilities and limitations of the vehicle and be subject to a background check as described in Section 6.3.
5.2.4. Require training provided to the employees, contractors, or other persons designated by the manufacturer or entity to be documented and a summary of the training be submitted to the jurisdiction’s AV lead agency along with other required information.

5.2.5. Support the safe testing without a human driver inside of the vehicle by requiring a user designated by the manufacturer of the ADS technology or any such entity involved in the driverless testing of the ADS-equipped vehicle to be capable of assuming control of the vehicle’s operations or require that the ADS has the ability to achieve a minimal risk condition.

5.2.6. Take steps to ensure motor vehicle laws allow for the manufacturer to safely test Level 4 and 5 vehicles without a licensed driver, provided a user designated by the manufacturer or any such entity involved in the driverless testing of the ADS-equipped vehicle, is capable of assuming control of the vehicle’s operations or require that the ADS has the ability to achieve a minimal risk condition.

5.2.7. Consider requiring manufacturers or other entities testing ADS-equipped vehicles within the jurisdiction to certify the vehicles comply with all applicable FMVSS or CMVSS and that no required safety devices have been made inoperable. In lieu of the certification, evidence the vehicle(s) have received an exemption from the FMVSS or CMVSS should be required. See Section 4.9.

Benefits of Implementation

The review of jurisdictional laws and rules regarding vehicle operation to ensure ADS-equipped vehicle testing is permitted will benefit the safe testing and deployment of ADS-equipped vehicles. Test driver training is a key element for the safe testing of ADS-equipped vehicles. Testing of ADS-equipped vehicles by manufacturers and other entities, in as many situations as possible, will support the safe deployment of ADS-equipped vehicles to consumers.

Challenges to Implementation

Challenges to implementation include the review of jurisdictional laws and rules regarding vehicle operation for the testing of ADS-equipped vehicles and educating manufacturers on the process for submitting required documentation.

5.3 Remote Driver

Background

It is anticipated that drivers may completely control a vehicle from a remote location using a virtual driver’s seat. There is the potential for remote drivers to operate all types of vehicles from personal to commercial vehicles, including shuttles and delivery vehicles. They may control more than one vehicle at a time because most likely, the vehicles will be part of a fleet of vehicles. The remote driver may be in a company office, may work from home, may be in another vehicle, or may be in a vehicle that does not have traditional manual controls such as a steering wheel or foot pedals.

The remote driver’s role is emerging. The Subcommittee developed this information to assist jurisdictions but anticipates updates in the future as this technology progresses.

Remote drivers are defined by SAE International as “A driver who is not seated in a position to manually exercise in-vehicle braking, accelerating, steering, and transmission gear selection input devices (if any) but is able to operate the vehicle.”

Recommendations for Manufacturers and Other Entities

MOE 7. Manufacturers and other entities should complete a background check and provide or ensure appropriate training for ADS-equipped vehicle test drivers. See Section 6.3 on background checks.
Although not part of the definition, SAE International also provides the following clarification:

Note 1: A remote driver can include a user who is within the vehicle, within line of sight of the vehicle, or beyond line of sight of the vehicle.

Note 2: A remote driver is not the same as a driverless operation dispatcher (see 3.29.4), although a driverless operation dispatcher may become a remote driver if [they have] the means to operate the vehicle remotely.

Note 3: A remote driver does not include a person who merely creates driving-relevant conditions that are sensed by, or communicated to, the ADS (e.g., a police officer who announces over a loudspeaker that a particular stop sign should be ignored; another driver who flashes [the] head lamps to encourage overtaking, or a pedestrian using a dedicated short range communication (DSRC) system to announce [their] presence).

Example 1: A level 2 automated parking feature allows the remote driver to exit the vehicle near an intended parking space and to cause the vehicle to move into the parking space automatically by pressing and holding a special button on the key fob, while [they are] monitoring the driving environment to ensure that no one and nothing enters the vehicle pathway during the parking maneuver. If, during the maneuver, a dog enters the pathway of the vehicle, the remote driver releases the button on the key fob in order to cause the vehicle to stop automatically. (Note that the remote driver in this level 2 example completes the OEDR subtask of the DDT during the parking maneuver.)

Example 2: Identical situation to Example 1, except that the remote driver is sitting in the back seat, rather than standing outside the vehicle.

Example 3: A level 4 closed campus delivery vehicle that has experienced a DDT performance-relevant system failure, which forced it to resort to a minimal risk condition by parking on the side of a campus roadway, is returned to its designated marshalling yard by a remote driver who is able to operate the vehicle using wireless means.

As explained by SAE International, a dispatcher or passenger who enters a point of origin and or destination into a system but does not perform the DDT is not a remote driver.

Guidelines for Testing Vehicles

Jurisdictions should recognize that this type of vehicle operation is being developed, tested, and piloted today. A consistent definition will be beneficial as these vehicles move across borders.

It is also important to recognize that the FMCSA, which has regulatory authority over CDLs and interstate commercial vehicles is in the process of developing regulations that will need to be considered as they are adopted.

The location of the remote driver, in relation to the vehicle they are operating, needs continued conversation with all stakeholders. It is possible that a remote driver could be very close to the vehicle or could be miles away, in another jurisdiction or even in another country.

Remote drivers must be familiar with the traffic laws in the jurisdictions in which they are driving, just as traditional drivers in vehicles are today. However, the issue becomes more complicated when there is a crash or incident that requires law enforcement interaction with the driver.

It will be difficult for officers to identify the remote driver and determine the remote driver’s actual physical location. If the officer is in one jurisdiction but the remote driver is in another, it becomes problematic. This can be significant if there is a need to determine if the remote driver was distracted or impaired or violated other laws. It will also be
important to determine the limit on the number of vehicles a remote driver can safely drive and the number of vehicles the remote driver can safely supervise at one time.

The remote driver must be able to determine the vehicle’s physical condition and that it can be operated safely. This will require systems, sensors, and mechanisms to be in place to monitor the condition of vehicle equipment.

Recommendations for Jurisdictions

5.3.1. Define “remote driver” in statutes by adopting the SAE International definition and review the SAE International document J3016 dated June 2018 *Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles* for additional information and further explanation of the definition.

5.3.2. Require the testing entity to agree in writing that a remote driver would be subject to an operator fitness evaluation by law enforcement in the event of an incident or crash.

5.3.3. Clarify in law that all laws applicable to drivers also apply to remote drivers.

5.3.4. Review current license restrictions and endorsements to determine which apply to a remote driver and when a remote driver must comply with the restriction or endorsement. For example, restrictions could apply include corrective lenses, hearing devices, and accommodations for missing limbs.

5.3.5. Driver’s license program staff and law enforcement need to understand remote driving and be well versed in responding to inquiries.

5.3.6. Require manufacturers and other entities testing vehicles using a remote driver to notify the jurisdiction’s lead AV agency, comply with all other testing requirements and to provide the names and driver’s license information for all remote drivers.

5.3.7. Require documentation from the manufacturers and other entities that remote drivers have been trained to safely operate the vehicle remotely.

Recommended Requirements for Remote Test Drivers

5.3.8. Comply with all federal and jurisdictional laws unless otherwise exempt.

5.3.9. Hold the class of license for the vehicle they are driving.

5.3.10. Be physically located in the same jurisdiction as the vehicle they are driving.

5.3.11. Inform their employer immediately of any moving violations.

5.3.12. Be fit to drive and not be impaired or distracted.

5.3.13. Remotely drive only one vehicle at a time.

5.3.14. Be at a specific location and not drive remotely from another vehicle. (It should be noted that remote driving is not the same as driving a lead vehicle in a platoon of vehicles.)

5.3.15. Make available to law enforcement, upon request, their name, physical location, license number, and jurisdiction of issue, as well as the name and contact information of their employer.

5.3.16. Report a crash immediately to the appropriate law enforcement in the jurisdiction in which the vehicle is located.
Implementing the recommendations will require resources to conduct educational outreach and staff training. Laws and regulations will need to be updated to include remote driver’s licensing requirements. The enforcement of remote driver qualifications and driver fitness along with the complication of the vehicle and driver being in separate locations will need to be considered.

5.4 Endorsements and Restrictions for Deployed Vehicles

Background

Because the driver of Level 0 to 3 vehicles with ADAS is expected to be in control of the vehicle, most current driver’s license qualifications will apply to their operation. Therefore, existing driver’s license qualifications will remain applicable.

Vehicles with Level 4 and 5 ADS functionality have the expectation of enhancing the mobility of those unable to drive or to be licensed because of physical disability, age, or some other condition. Permitting passengers without a licensed driver in these vehicles while the ADS is performing the DDT within its ODD would allow these populations to benefit from the technology. Level 4 and 5 ADS-equipped vehicles may not have a driver or passengers (e.g., empty vehicle or cargo).

Guidelines for Endorsements and Restrictions

The full implication of endorsements or restrictions for ADS-equipped vehicles is not yet fully understood, particularly for Level 4 and 5 ADS-equipped vehicles. Until these technologies have completely developed, driver’s license endorsements and restrictions are not recommended.

Additionally, there is a risk of creating conflicting jurisdictional endorsements and restrictions if jurisdictions consider this licensure regime. This will complicate the exchange of driver’s licenses from jurisdiction to jurisdiction in translating codes. It will...
be important to fully examine the development of standardized codes for endorsements and restrictions if they are warranted.

Jurisdictions should not impose any other requirements, such as licensure, sobriety, or clean driving history, for nondrivers to be passengers in Level 4 and 5 ADS-equipped vehicles if the vehicle cannot be operated in manual mode. Assuming Level 4 and 5 ADS-equipped vehicles will require the passenger only to provide destination or navigation inputs, no special training or qualification should be required. The operation of Level 4 and 5 ADS-equipped vehicles is comparable to taking a taxi, riding a bus, or riding the subway, none of which requires special training or licensure.

There is the potential for unsupervised children to be placed in ADS-equipped vehicles. Jurisdictions will want to review their laws and regulations related to unsupervised children in motor vehicles to ensure safety.

Recommendations for Jurisdictions

5.4.1. Do not establish endorsements or restrictions on driver's licenses at this time, specifically for ADS-equipped vehicles.

5.4.2. Take steps to ensure jurisdictional motor vehicle laws allow for the operation of Level 4 and 5 ADS-equipped vehicles without a driver if the vehicle cannot be operated in manual mode.

5.4.3. Do not limit the operation of Level 4 and 5 ADS-equipped vehicles to individuals who are licensed as drivers.

5.4.4. Do not impose any other requirements, such as licensure, sobriety, or clean driving history, for nondrivers to use Level 4 and 5 ADS-equipped vehicles.

5.4.5. Review jurisdictional laws and regulations related to unsupervised children in motor vehicles to ensure safety.

Benefits of Implementation

By not creating ADS-equipped vehicle endorsements and restrictions, jurisdictions will eliminate conflict of jurisdictional codes and the complications in translating codes when exchanging driver’s licenses from jurisdiction to jurisdiction.

Challenges to Implementation

If a jurisdiction implements ADS-equipped vehicle endorsements and restrictions, it will create challenges for other jurisdictions for the exchange of driving privileges.

5.5 Driver Training for Drivers on Vehicle Technologies

Background

Although most of this report addresses ADS-equipped vehicles, technology described as ADAS also has implications for the driver’s license training and testing process. Therefore, Sections 5.5 to 5.9 include discussions on ADS-equipped vehicles as well as ADAS equipped vehicles.

The operation of ADAS and ADS-equipped vehicles by drivers will have significant implications for driver training. As ADAS and ADS-equipped vehicles are deployed and become available to the public, drivers will need to understand the technology and receive proper training on the operation and limitations of their ADAS and ADS-equipped vehicles when available.

Drivers need to understand how to use ADAS technology in their vehicles. If drivers are confused, they may turn it off, not use it as intended, use it beyond its limitations, or overly rely on it. Manufacturers, organizations, and legislators should adopt consistent terminology for ADAS to reduce confusion among the general public. The terminology needs to be simple to understand and be based on the function of the technology. As described in Section
Jurisdictions will need to encourage manufacturers and dealers to provide proper training to the fullest extent for drivers. Jurisdictions may also need to encourage manufacturers and dealers to offer incentives for drivers to seek training from a fully qualified driver educator.

Agreement on a minimum set of training requirements, outside of the normal owner’s manual or aftermarket information, will have a direct impact on the success of ADAS and ADS-equipped vehicle technology. Many dealerships already provide personal training classes on features of the vehicle for their customers. Standardized training should be available to everyone who purchases or has the technology installed on their vehicle. In addition to these jurisdictional guidelines, stakeholder consultation is highly recommended.

Recommendations for Jurisdictions

5.5.1. Promote driver training on the use of ADAS and ADS-equipped vehicle functions.

5.5.2. Encourage communication between dealers and drivers including, but not limited to, acknowledgement of the sections in the vehicle “owner’s manual” related to the ADAS and ADS-equipped vehicle functions.
5.5.3. Encourage manufacturers, dealers, and insurance companies to provide incentives for drivers to receive proper training on the use of ADAS and ADS-equipped vehicle functions from a fully qualified driver educator.

5.5.4. Encourage aftermarket system manufacturers and dealers to provide educational materials and resources to drivers.

Recommendations for Manufacturers and Other Entities

MOE 8. Manufacturers and dealers should take steps to make training available to drivers to ensure they understand the functionality of the vehicle and are prepared to properly operate them.

Benefits of Implementation

Drivers who are properly educated on ADAS and ADS-equipped vehicle operation will support the safe deployment of these vehicles.

Challenges to Implementation

Challenges to implementation include persuading drivers to seek training on their ADAS and ADS-equipped vehicle functions and obtaining buy-in from manufacturers, dealers, and insurance companies to provide training or to offer incentives to drivers to seek training.

The use of rental vehicles and other unfamiliar vehicles can result in the driver or user not understanding the technology, how to use it, and its limitations or benefits. The Automated Vehicles Subcommittee will continue to explore this topic.

5.6 Training for Driver Educators, Driver Education and Driver Training Programs

Background

The training of driver educators and the creation of driver education curricula should evolve with ADAS and ADS technologies, which have many implications for driver education. National organizations that play a key role in the development of driver education and driver training curricula including driver educator training curricula include:

- American Automobile Association (AAA)
- American Driver and Traffic Safety Association (ADTSEA)
- Driving School Association of the Americas (DSAA)
- American Association of Retired Persons (AARP)

The Association of National Stakeholders in Traffic Safety Education (ANSTSE) develops free standards and resources to assist jurisdictions in their driver education efforts. Each of these organizations and the Automated Vehicles Subcommittee are available to assist driver educators and driver education programs as they broaden their knowledge of ADAS and ADS-equipped vehicles.

For Commercial Vehicle Operations, where ADAS and ADS technologies are also evolving rapidly, national organizations who play a key role in training include:

- Commercial Vehicle Training Alliance (CVTA)
- National Association of Publicly Funded Truck Driver Training Schools (NAPFTDS)
- Professional Truck Driver Institute (PTDI)
Guidelines for Deployed Vehicles

Driver educators can play a key role in educating new and existing drivers on ADAS and ADS-equipped vehicles. Standards and materials for the training of driver educators on the use of ADAS and ADS-equipped vehicles to ensure they are familiar with the function and operation will need to be established.

For novice drivers, driver education materials will need to be updated and maintained to include information on the use of and interaction with these technologies and provide hands-on training during behind-the-wheel instruction.

Standards for curricula and educator training will need to be updated and maintained on a regular basis as technologies continue to evolve. Such standards are available through the Novice Teen Driver Education and Training Administrative Standards (NTDETAS) on the ANSTSE website. ANSTSE develops and maintains these national driver education standards.

For all drivers, education materials on vehicle technologies will need to be developed and an effective delivery method determined. See Section 5.5 for information on training all drivers.

Recommendations for Jurisdictions

5.6.1. Require driver education curricula to contain information on ADAS and ADS-equipped vehicles and to provide behind-the-wheel instruction using this technology.

5.6.2. Require all definitions and language on ADAS and ADS-equipped vehicles provided in driver education to use the SAE International or AAMVA’s guidelines for consistency.

5.6.3. Establish standards and materials for required training of driver educators on the use of ADAS and ADS-equipped vehicles.

Benefits of Implementation

Training for driver educators will ensure they are familiar with ADAS and ADS-equipped vehicles. Standardization of content in driver education curricula will ensure consistent information on vehicle technologies is provided by driver educators to all drivers.

Educating the driving public on the benefits and functionality of ADAS and ADS-equipped vehicles will enhance safety and public acceptance.

Challenges to Implementation

Driver educators may not be well informed of vehicle technologies; therefore, there may be inconsistencies in the delivery of driver education courses. Inconsistencies among jurisdictions on standardized content for driver educators and driver education curricula impacts how driver education is delivered.

5.7 Driver’s License Skills Testing with Vehicle Technologies

Background

It is important to determine what technologies are permitted during the driver’s license examination procedures. These technologies can be grouped into the following categories:

- Convenience technologies – for purposes of this report, are technologies that provide conveniences for the driver (e.g., parking assist feature or auto-cruise control) and do not require the applicant to demonstrate a required skill set and should not be permissible for testing.

- Safety-critical technologies – for purposes of this report, are technologies that may prevent or reduce the severity of a crash. These
Technologies (e.g., backup or other cameras, alerts, lane departure warning, emergency braking assist) could prevent or lessen the severity of a crash and should be permissible and not be disengaged for testing.

Guidelines for Deployed Vehicles

The purpose of the driver’s license skills examination is to determine an applicant’s proficiency in operating a motor vehicle in most road situations. The applicant should not be assisted by vehicle convenience technologies. Skills examinations evaluate the applicant’s abilities, not the vehicle’s technology.

Even though a vehicle is equipped with technology features, the applicant must demonstrate the ability to operate the vehicle in manual mode and not solely rely on the technology.

As technologies evolve, there may be a need to examine drivers on their ability to operate specific vehicle technologies. Guidance in this area will be considered in future iterations of this report.

The use of safety-critical technologies should be permitted for skills examinations. These technologies should not be disengaged during skills examinations. In fact, some safety-critical technologies cannot be deactivated. Safety-critical technologies include, but are not limited to:

- cameras;
- blind spot warnings;
- lane departure warnings; and
- emergency brake assist

NHTSA and Transport Canada now require all new vehicles to have rearview video systems, also known as backup cameras.

The skills examination and parking maneuvers should be revised to incorporate use of these technologies. In the case of backup cameras or other cameras, the criteria for checking mirrors and blind spots (head-check) while backing up should be updated to evaluate the applicant’s behaviors to use cameras in conjunction with mirrors and head-checks, as an example.

The skills examination scoring standards should be updated to reflect the proper procedures for examiners to follow when a safety-critical function activates during the testing process.

A driver must be licensed to operate a vehicle that has the option to switch from an automated mode to a manual mode. When conducting a skills examination in an ADS-equipped vehicle with both modes, it must be operated in the manual mode.

MVA driver’s manuals may not currently contain information on ADAS or ADS technologies. These manuals will need to be updated and maintained to include pertinent and up-to-date information on ADAS and ADS-equipped vehicles.

AAMVA assists jurisdictions with driver examination practices and driver’s license examiner training. The AAMVA TMS is responsible for maintaining and updating AAMVA’s model driver testing systems, including the AAMVA Noncommercial Model Driver Testing System (NMDTS).
It is important to ensure licensing restrictions are not unnecessarily placed on a driver if the vehicles can be designed to prevent manual operation for occupants unable to operate a vehicle safely.

There may be some resistance to requiring a driver’s license for ADS-Equipped Dual-Mode Vehicles. MVAs will need to work with manufacturers and designers to better understand the appropriate safeguards for the public and the occupants.

The working group will continue to explore the dual-mode vehicles as the technology progresses.

Recommendation for Manufacturers and Other Entities

MOE 9. Manufacturers and other entities that develop an ADS-equipped vehicle that can be fully operated by a human or fully operated by an ADS should consider taking steps to prevent the human-operated mode from being engaged in error. The working group is concerned that a passenger in a dual-mode ADS-equipped vehicle who does not have a driver’s license could engage the mode that requires a human driver to intervene.

5.8 Training Motor Vehicle Agency Examiners on Vehicle Technologies

Background

AAMVA’s TMS and the IDEC Board recognize that vehicle technologies are emerging faster than driver’s license test design and examiner training can keep pace. ADAS and ADS-equipped vehicle technologies have many implications for driver licensing and driver testing programs. AAMVA assists jurisdictions with driver testing standards and driver’s license examiner training.

The Automated Vehicles Subcommittee has partnered with the AAMVA TMS and other organizations to

Recommendations for Jurisdictions

5.7.1. Include ADAS and ADS information on vehicle technologies in the jurisdiction’s driver’s manual when provided by the AAMVA TMS.

5.7.2. Include questions addressing ADAS and ADS in the jurisdictional knowledge test when provided by the AAMVA TMS.

5.7.3. Jurisdictions should not allow the applicant to use convenience technologies, such as the parking assist feature, for skills examination or parking maneuvers during the skills examination.

5.7.4. Allow the applicant to use safety-critical technologies during skills examinations. These technologies, such as backup or other cameras, should not be disengaged during examinations.

5.7.5. Jurisdictions should not require applicants to deactivate safety-critical technologies during the skills examination process.

Benefits of Implementation

Standardized testing procedures and driver’s manual information will ensure consistent driver examination practices for ADAS and ADS technologies. AAMVA’s NMDTS and the AAMVA TMS may facilitate this standardization.

Challenges to Implementation

Agreement among jurisdictions on standardized procedures for examination of drivers in vehicles with technologies will be essential to achieve consistency. Additionally, agreement on standardized information to be included in jurisdictional driver’s manuals on the operation of vehicle technologies will be a challenge.
update model driver’s manuals, knowledge tests, and skills tests in the future to address the use of vehicle technology to support the driver testing process. The Automated Vehicles Subcommittee is also assisting the AAMVA IDEC Board to update driver’s license examiner training materials to address emerging vehicle technology. In the interim, the TMS and IDEC along with the AAMVA Automated Vehicles Subcommittee developed Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems. It is intended to assist members as they review and update their driver examination policies and procedures to address new vehicle technologies within driver testing.

The guidelines apply to noncommercial and commercial vehicles unless prohibited by state and federal law. It outlines technologies and implications for testing and provides recommendations for testing procedures and examiner training.

Guidelines for Deployed Vehicles

As AV technologies continue to advance, the training of driver’s license examiners will need to keep pace with these advancements. AAMVA’s Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems will assist jurisdictions to revise or enhance their driver testing and examiner training programs. AAMVA’s IDEC model training materials, which will be updated in the future to include ADAS and ADS-equipped vehicle technologies, will also be a valuable resource.

See Appendix D for an overview of the plan Nevada DMV used to provide Driver Examiner Training on ADAS.

Recommendations for Jurisdictions

5.8.1. Provide training to driver’s license examiners on vehicle technologies, including the operation of ADAS and ADS-equipped vehicles. AAMVA’s Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems resource guide, published in 2019, should be used in examiner training.

5.8.2. Use AAMVA’s IDEC model training materials, when updated, to assist with ADAS and ADS examiner training requirements.

5.8.3. Require all definitions and language on ADAS and ADS-equipped vehicles provided to driver’s license examiners use the SAE International or AAMVA’s guidelines for consistency.

Benefits of Implementation

Training for driver’s license examiners will ensure they are familiar with ADAS and ADS-equipped vehicles. Standardization of content in examiner training will ensure consistent information on vehicle technologies is provided to examiners.

Challenges to Implementation

Inconsistencies among jurisdictions on standardized content of vehicle technologies for driver’s license examiner training standards impact how driver testing is administered.

Driver examiners may not be well informed of vehicle technologies; therefore, there is the potential for inconsistencies in driver testing practices.

5.9 Training Motor Vehicle Agency Staff on Vehicle Technologies

Background

ADAS and ADS-equipped vehicle technologies have the potential to impact most MVA driver programs. Therefore, it is important to provide information and training to the MVA staff as technology evolves. Managers should begin to understand the technology
to help them anticipate and prepare for impacts on their program areas.

Guidelines for Testing Vehicles

Although most MVA staff will not be impacted by MOE testing of ADS-equipped vehicles, senior-level managers will benefit from understanding their jurisdiction’s approach to the regulation of MOE testing. By understanding the progression of testing, the managers will be better prepared to adjust the programs under their responsibility.

Benefits of Implementation

Training for MVA staff will ensure they are familiar with ADAS and ADS-equipped vehicles. Standardized staff training will ensure consistent information on vehicle technologies is provided. By introducing ADAS technology, staff can be better informed and more aware of the safe operation and limitations of the technology as they operate vehicles provided by the jurisdiction and purchase vehicles for their personal use. The public expects MVA staff to be versed in highway safety. This includes understanding new advancements in vehicle safety, including ADAS and ADS-equipped vehicles.

Challenges to Implementation

It is always a challenge to find the time and resources to provide training to staff when much of their time is spent providing services to the public. A lack of understanding of vehicle technology available today in the driver licensing programs can lead to inconsistencies among staff and across jurisdictions.

Guidelines for Deployed Vehicles

As AV technologies continue to advance, the training of MVA staff will need to keep pace. Section 5.8 specifically addresses the training of MVA examiners on vehicle technologies.

Recommendations for Jurisdictions

5.9.1. MVA senior managers and applicable staff should be aware of MOE ADS-equipped vehicle testing and their jurisdiction’s regulatory approach.

5.9.2. Provide general training to MVA staff on vehicle technologies, including what the technology does and how it works. AAMVA’s *Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems* resource guide, published in 2019, should be used when training driver licensing staff (see Section 5.9.)

5.9.3. Require all definitions and language on ADAS and ADS-equipped vehicles provided to MVA staff use the SAE International and AAMVA’s guidelines for consistency.

5.9.4. Begin to expose staff to vehicle technology by incorporating some general education in staff meetings. This could include showing videos, graphics, and pictures of vehicles equipped with ADAS and ADS.
5.10 Commercial Driver Licensing

Background

The FMCSA regulates the safety of commercial motor carriers operating in interstate commerce, the qualifications and safety of Commercial Motor Vehicle (CMV) drivers, and the safe operation of commercial trucks and motor coaches. FMCSA is broadly considering whether to amend its existing regulations to accommodate the integration of ADS into commercial vehicle operations. Many of FMCSA’s current regulations can be readily applied in the context of ADS-equipped CMVs.

FMCSA informed the Automated Vehicles Subcommittee it is considering amendments to its rules to account for significant differences between human operators and ADS. It also indicated the agency’s preliminary approach is to integrate ADS-equipped CMVs and their operation into existing regulations. FMCSA acknowledged that federal and jurisdiction enforcement officials may need further training to identify problems with ADS-equipped CMVs, but it is not the FMCSA’s goal to have these officials be responsible for conducting diagnostic tests of a CMV’s ADS. FMCSA discourages inspectors from delaying the movement of ADS-equipped CMVs unless there are clear indications of safety-critical CMV violations and ADS faults or malfunctions.

Guidelines for Testing Vehicles

All existing jurisdiction and federal laws, rules, and regulations should remain in effect unless specific exemptions or authorizations are granted to the testing entity.

Guidelines for Deployed Vehicles

CDL laws, rules, and regulations will need to be updated to address ADS-equipped vehicles. However, at this time, it is important for jurisdictions to work with FMCSA to ensure that jurisdiction and federal regulations are aligned.

Recommendations for Jurisdictions

5.10.5. Engage in the review and development of federal regulations by FMCSA.

5.10.6. Review and adopt amendments to jurisdictional laws as federal regulations are updated.

Benefits of Implementation

Jurisdictions will have input into updated federal regulations through the usual notice-and-comment rulemaking process and can assist in continuing to align jurisdictional and federal regulations.

It is anticipated that automated technologies in commercial vehicles, as in automobiles, will reduce the errors and poor decisions made by humans and improve safety.

Challenges to Implementation

Updating federal regulations is a lengthy process, and FMCSA may not be able to react to the testing and deployment of the technology at the same pace as the technology emerges. However, FMCSA has the authority to grant waivers and exemptions and to conduct pilot programs per 49 CFR part 381. FMCSA discussed this in its previous Federal Register notices seeking public comment. These waivers and pilot programs allow FMCSA to react at a much faster pace than rulemaking.

Another challenge is ensuring uniformity across jurisdictions during their implementation process. Uniformity across jurisdictions may facilitate further expansion of this technology.
Chapter 6 Law Enforcement Considerations

Introduction

This chapter outlines the leading concerns to law enforcement for ADS-equipped vehicles operated on public roadways, including vehicle identification, crash and incident reporting, criminal activity, distracted driving, law enforcement and first responder interaction plans, adherence to traffic laws, and more. There are 36 recommendations in the following 11 subsections: 16 recommendations directed to jurisdictions for implementation consideration and 20 directed to MOEs.

6.1 Vehicle Identification

Background

Identification of a motor vehicle as an ADS-equipped vehicle is necessary for law enforcement officers and other first responders (police, fire, EMS, and tow and recovery services) to fulfill their duties. These duties include ensuring the occupant(s) is properly credentialed (if required), ensuring safety at the scene if the occupant(s) is incapacitated in a crash, and aiding in the recovery of stolen vehicles.

From a law enforcement perspective, traditional means for identifying a vehicle via a license plate check may not be the optimal method to identify a vehicle equipped with ADS. License plates are susceptible to theft, only allow identification from the rear in one-plate jurisdictions, and may be obscured in crashes involving front or rear damage. In addition, jurisdictions currently issue a vast array of unique plate designs; one more plate design will not aid in the identification of an ADS vehicle if a similar model vehicle exists in the marketplace.

In contrast, vehicle labeling or permanent marking to identify the vehicle equipped with ADS allows for redundant marking in multiple locations (exterior and interior), improving conspicuity from multiple vantage points. SAE International, the International Organization for Standardization (ISO), and NHTSA have all developed ADS labeling guidelines or have issued proposed rules for labeling of alternative fuel vehicles. These guidelines, or in the case of NHTSA’s proposed rule, have varied purposes. Each provides some guidance for accepted labeling.

SAE International and ISO provide guidance for OEMs relative to first and second responder safety for vehicle crashes involving electric- and hydrogen fueled vehicles (xEVs) and include reference to labeling to assist emergency responders to identify the drive system of the vehicle at a safe distance. This is important because many of these vehicles have virtually silent motors or drive systems that can result in unexpected vehicle movements. Although the SAE International-recommended practices (J2990 and J2990/1) and ISO-recognized symbol usage are nonbinding, they already have a certain level of acceptance among the OEMs. However, to date, no unique symbols or identification for ADS-equipped vehicles have been standardized by either organization.

NHTSA issued a notice of proposed rulemaking (NPRM) in 2014 for labeling of alternative fuel vehicles, including, but not limited to, vehicles covered by the recommended practices of SAE International and recommended symbols of ISO.

In addition to vehicle labeling, other vehicle identification strategies should be considered to improve safety and facilitate motor vehicle
administration practices and law enforcement efforts. The VIN conveys significant information regarding the characteristics of the motor vehicle to which it is issued. A new VIN system should be considered. VIN information must include information relative to ADS onboard the vehicle. This information should be tied to registration and user credentialing (see references in Section 4.5).

The following information was provided by the Commercial Vehicle Safety Alliance (CVSA):

Specific to commercial motor vehicles (CMV), CVSA is pursuing the establishment of a universal electronic vehicle identifier, which could be integrated with a new VIN system. CVSA has petitioned both FMCSA and NHTSA to initiate rulemaking in this regard. The universal electronic vehicle identifier would also help enable electronic inspections of vehicles through a new electronic inspection protocol (CVSA North American Standard Level VIII inspection). These two concepts would combine to facilitate identification and safety assessment of ADS-equipped CMV.

Guidelines for Testing Vehicles

Whenever an ADS-equipped vehicle is operated on a public road, it is susceptible to a crash and theft. In addition, there may be laws specific to the operation of ADS-equipped vehicles that require law enforcement officers to identify the vehicle as ADS-equipped. For the safety of law enforcement and other first responders, an ADS-equipped vehicle should be readily and clearly identifiable from other vehicles on the roadway. The optimal means for accomplishing identification is through vehicle labeling.

Because jurisdictions have authority over vehicle registration, a unique ADS identifier on the vehicle registration may provide an alternative (see Section 4.5), albeit less effective, means of identifying ADS-equipped vehicle for law enforcement purposes during testing. However, because external-facing vehicle labeling will better identify these vehicles and thereby improve safety and regulatory control, manufacturers should ensure ADS-equipped vehicles have permanent labeling on the rear and sides of the vehicle.

Recommendations for Jurisdictions

6.1.1. Enact requirements for permanent labeling on the rear and sides of ADS-equipped vehicles to better identify vehicle capabilities and improve safety and regulatory control.

Recommendations for Manufacturers and Other Entities

MOE 10. Manufacturers and other entities should develop international consensus standards for a system of external-facing permanent labeling of ADS-equipped vehicles.

Benefits of Implementation

These recommendations, if adopted, will allow law enforcement and other first and secondary responders to readily identify a vehicle from a distance as one with automated capability in a standardized manner. They will enhance the safety of crash scenes, identify the credentialing necessary of users and owners, and aid in the recovery of stolen vehicles.

Challenges to Implementation

The labeling of vehicles has historically been the purview of vehicle manufacturers, which have significant interest in retaining the identity and integrity of their brand. OEMs may oppose efforts to standardize how the capability of their vehicles is conveyed to the motoring public. Historically, OEMs have named features in a proprietary manner to further distinguish their brand or model, or they have chosen not to differentiate model-specific features from other models in their lineup that would signify equal levels of quality or reliability across the brand.
Federal labeling mandates will standardize terminology across all manufacturers, which could be perceived as overstepping government authority and counter to their marketing strategies. OEMs may also resist uniform labeling fearing motorists may challenge the capabilities of vehicles that are badged as automated.

6.2 Crash and Incident Reporting

Background

Crash reporting should occur when there are crashes or incidents between ADS-equipped vehicle and other vehicles, persons, animals, or objects whether or not the ADS is the proximate cause.

Safety and crash avoidance are priorities of automobile manufacturers. Regardless of the level of safety engineering, crashes are inevitable during testing and deployment on public roads. Crash and incident reporting are important for purposes of identifying and documenting safety concerns and establishing liability. Crash report information is not only of importance to manufacturers and the engineering community but also to a variety of public constituencies, including regulators and legislators. Full disclosure of information concerning how a crash occurred will be essential to future development, regulation, and public acceptance of ADS.

Guidelines for Testing Vehicles

ADS manufacturers and other entities should submit to the jurisdiction incident and crash related information to expand ADS data and research as needed by the jurisdiction. Information should include instances of a crash and include when ADS-equipped vehicles are operating in automated mode or disengaged (by the user or by the system). The information should also include incidents in which the users of ADS-equipped vehicles are unexpectedly prompted to transition into manual mode because of a failure of the automated system. Manufacturers and other entities should be required to submit a summary of their analysis of the incident.

Requiring manufacturers and other entities to report unexpected incidents and crashes to the jurisdiction provides transparency between agencies and manufacturers and other entities throughout the testing phase. Sharing these data and their analysis of the incident would be beneficial to jurisdictional policymakers.

When an ADS-equipped vehicle is involved in a crash, the information obtained from the ADS recorded data could prove important to determining whether an ADS malfunction or programming caused the crash, contributed to the crash, or if the crash could otherwise have been avoided. Additionally, the data collected from the vehicle(s) involved could potentially provide insight into how the ADS reacts to given scenarios. The data recorded should include, but not be limited to, the mode of operation (ADS vs. manual control), location, speed, throttle or brake application, and a 360-degree video sample of the vehicle surroundings if so designed or equipped. Law enforcement should be provided with access to this information as well as a minimum of 30 seconds pre-crash through the end of the crash event for completing a proper investigation.

Recommendations for Jurisdictions

6.2.1. Require ADS test entity to submit to the jurisdiction crash-related information and a summary of the analysis of the incident to expand the amount of ADS data and research.

Guidelines for Deployed Vehicles

The U.S. DOT Model Minimum Uniform Crash Criteria (MMUCC), 5th Edition (August 2017) includes guidance for capturing AV data on crash reports to assist in crash causation determination and support further AV development and safety. U.S. jurisdictions will need to adopt the MMUCC recommendation as soon as practicable.
Large amounts of data are captured by the vehicle Data Collection Mechanisms (DCM). Such information would aid a crash investigation by revealing pre-and post-crash causative factors and actions. This information may include both the driver and automated system actions when the users of ADS-equipped vehicles are prompted to transition into manual mode because of a failure or dysfunction of the automated system.

Manufacturers should ensure ADS record vehicle behavior sensor data and the human-vehicle interface (HMI) and should also include time stamping and Global Positioning System (GPS) location in the DCM data. In addition, to ensure effective crash investigation and safety analysis, manufacturers should make DCM information retrievable in a standard, nonproprietary format for ready access by those duly authorized in accordance with laws protecting data privacy.

Recommendations for Jurisdictions

6.2.2. U.S. jurisdictions should adopt the MMUCC 5th Edition (August 2017) recommendation as soon as practicable.

Recommendations for Manufacturers and Other Entities

MOE 11. Manufacturers and other entities should design ADS to record vehicle location, behavior sensor data, and the HMI. Law enforcement should be provided with access to this information as well as a minimum of 30 seconds pre-crash through the end of the crash event (cessation of involved vehicle movement) for completing a proper investigation.

MOE 12. In addition to complying with the requirements of 49 CFR Part 563, manufacturers should make DCM information retrievable in a standard, nonproprietary format for ready access by those duly authorized.

MOE 13. Manufacturers and other entities should include time stamping and GPS location in DCM data.

Benefits of Implementation

Collection of crash and incident data is beneficial to manufacturers and developers during the developmental process. Once deployed, in addition to manufacturers and developers, law enforcement, and other applicable agencies benefit from data recorded of the crash event to aid in determining causation.

Challenges to Implementation

Because much of the ADS industry is proprietary, manufacturers may object to part or all of this recommended guideline.

6.3 Criminal Activity

Background

There are both substantial opportunities and risks presented by automated driving that will increase the tactical performance of physical tasks over manually driving a vehicle. ADS-equipped vehicles have the potential to improve driving safety and make mobility more efficient. However, they will also create greater possibilities for dual-use applications and ways for a vehicle to be used to further criminal enterprises, or worse, be used as a tool for the delivery of explosives or other means of causing harm. This is not only a clear and present danger but also further complicates any subsequent criminal investigation.

New technologies that will be available in vehicles present opportunities to prevent certain vehicle-related crimes from being committed and assisting law enforcement in interdicting crimes. Technologies also present an opportunity to aid in the investigation of crimes that have been committed.

Although ADS-equipped vehicles may substantially reduce the risk of in-vehicle distractions leading to
crashes, criminals will also be able to conduct tasks that require use of both hands or to take one’s eyes off the road. Aiming and firing a weapon at a pursuing patrol vehicle is an example of a multitasking threat.

Guidelines for Testing Vehicles

Prior to authorization to operate an ADS-equipped test vehicle, the employees, contractors, and other persons designated by the manufacturer or other entities should be required to pass a background check, including, but not limited to, a driver history review and a criminal history check. In the interest of safety, it may be prudent to disqualify persons with poor driving records or criminal records from operating ADS-equipped vehicles as agents or contractors of manufacturers and other entities in a test environment.

Recommendations for Jurisdictions

6.3.1. Jurisdictions that have ADS-equipped vehicle permitting requirements as described in Section 4.1 should require the designated test users (employees, contractors, and other persons) to pass a background check, including, but not limited to, a driver history review and a criminal history check, prior to authorization to operate an ADS-equipped test vehicle.

6.3.2. Jurisdictions that have ADS-equipped vehicle permitting requirements as described in Section 4.1 should establish provisions which disqualify a test user who has a criminal record or a driving history that includes driving under the influence, reckless driving, or other significant conviction history from operating an ADS-equipped test vehicle in a test environment.

Recommendations for Manufacturers and Other Entities

MOE 14. The manufacturer or other entity, operating in jurisdictions not requiring ADS-equipped vehicle permits, should require the designated test user to pass a background check, including, but not limited to, a driver history review and a criminal history check, prior to authorization to operate an ADS-equipped test vehicle.

MOE 15. The manufacturer or other entity, operating in jurisdictions not requiring ADS-equipped vehicle permits, should disqualify a test user who has a criminal record or poor driving history from operating an ADS-equipped test vehicle in a test environment.

Guidelines for Deployed Vehicles

ADS-equipped test vehicles may also be a target for criminal activity, such as carjacking, because they may not be capable of intuitive reaction or evasive maneuvers a human user could employ.

To assist law enforcement in investigating criminal activity when an ADS-equipped test vehicle was implicitly involved as a tool for committing a crime, manufacturers should ensure ADS leave an electronic fingerprint that can allow tracing of input data to whomever initiated them.

Recommendations for Manufacturers and Other Entities

MOE 16. Manufacturers and other entities should ensure ADS-equipped vehicles leave an electronic fingerprint that can allow tracing of input data to whomever initiated the activity.

Benefits of Implementation

Requiring manufacturers to program software which creates an electronic fingerprint of HMI will mitigate
the risk of an AV being used as a tool to assist in the commission of, or escape from, a crime.

Challenges to Implementation

Inherent issues of privacy are recognized, and legislative action or administrative rule making will be required to implement the recommended guideline.

6.4 Distracted Driving

Background

The potential for reducing or eliminating distracted driving is a common topic when discussing ADS-equipped vehicles. The term “distraction” as used by NHTSA is a specific type of inattention that occurs when drivers divert their attention away from the driving task to focus on another activity. These distracting tasks can affect drivers in different ways and can be categorized into the following types:

- **Visual distraction:** tasks that require the driver to look away from the roadway to visually obtain information.
- **Manual distraction:** tasks that require the driver to take hand(s) off the steering wheel to manipulate a device or other distracting activity.
- **Cognitive distraction:** tasks that are defined as the mental workload associated with a task that involves thinking about something other than the driving task.

The impact of distractions on driving is determined not just by the type of distraction but also by the frequency and duration of the task. Because drivers often have a choice regarding when and how often to multitask when driving, their exposure to risk is typically within their control; however, some research has shown that drivers underestimate the overall risk of various tasks.¹

Guidelines for Testing Vehicles

When testing any ADS-equipped vehicle, the user is an active participant in the testing process; therefore, all distracting activities should be prohibited.

Recommendations for Manufacturers and Other Entities

MOE 17. Manufacturers and other entities should minimize distractions in ADS-equipped vehicles.

MOE 18. Manufacturers and other entities should prohibit users from all added distracting activities when testing ADS-equipped vehicles.

Guidelines for Deployed Vehicles

Jurisdictions should consider at what level of autonomy their distracted driving laws continue to apply. When a vehicle is in automated mode, the user may still need to maintain a level of awareness should they need to re-engage with the driving function if prompted by the vehicle. Because the operation of some ADS-equipped vehicles may require no participation by the driver, distracting activities may not be relevant, and distracted driving laws may not apply. Manufacturers should design ADS-equipped vehicles with a means of identifying when a vehicle is in automated mode to facilitate effective enforcement of distracted driving laws (e.g., so an officer knows if using a hand-held device is legal at the time of observation).

Recommendations for Jurisdictions

6.4.1. Consider the level of automation to which their distracted driving laws will apply.

Recommendations for Manufacturers and Other Entities

MOE 19. Manufacturers and other entities should design ADS-equipped vehicles with a means of identifying when a vehicle is in automated mode to facilitate effective enforcement of distracted driving laws (e.g., so an officer knows if using a hand-held device is legal at the time of observation).

MOE 20. Manufacturers and other entities should minimize distractions in ADS-equipped vehicles.

Benefits of Implementation

It is anticipated there would be a reduction in crashes caused by driver distraction.

Challenges to Implementation

Many jurisdictions have laws prohibiting distracted driving. A challenge will be for industry to develop consistent methodologies for systems that allow law enforcement to determine the level of the ADS and what mode the vehicle is in when they observe a user violating distracted driving laws.

Note: The Subcommittee will continue to explore this topic and anticipates providing additional guidance in 2021.

6.5 Establishing Operational Responsibility and Law Enforcement Implications

Background

Jurisdictions have legal authority to regulate vehicle operation by humans but may not have established authority over nonhuman operation. This uncertainty presents significant challenges to enforcement of traffic laws and to establishing legal responsibility when Level 3 to 5 vehicles are involved in motor vehicle crashes on public roads. Jurisdictions will need to address the following issues:

- Is the driver of a vehicle with automated features engaged still responsible for the operation of that vehicle even if they are not performing the DDT?
- In such instances, how will law enforcement officers know when the human is actively driving or if the ADS is in control?

Although this may appear to be less of an issue as vehicle technologies approach Level 5, from an enforcement perspective, the issue is still confounding because many jurisdictions lack any procedural enforcement mechanism against any entity other than the human driver operating the vehicle at the time of the offense or crash. Traffic tickets or violation notices usually cannot be issued to registered owners or corporate entities, and with the exception of parked vehicles, crash reports require a human driver for each involved vehicle. This may not apply to automated enforcement. Jurisdictions may need to define what enforcement actions can be taken and who or what is responsible when there is no human onboard.

Guidelines for Testing Vehicles

Jurisdictions will need to clearly establish legal responsibility for every vehicle operating on public roads. If a licensed driver is required to be onboard the vehicle during testing, that driver is responsible for the safe operation of the vehicle at all times and should be accountable for any violations of law and be considered the “driver” of the vehicle regardless of their degree of actual control of the DDT.

When Level 4 and 5 ADS-equipped vehicles, with or without a human onboard, are tested on public roads, the permitting process, described in Section 4.1, should clearly identify the person or entity legally responsible for the safe operation of the vehicle at all times. Before any testing permits are issued, the legal
mechanism and authority to hold the responsible entity accountable for violations of laws and crashes that may occur during testing should be clearly established.

Recommendations for Jurisdictions

6.5.1. Define what enforcement actions can be taken and who or what is responsible when there is no human onboard an automated test vehicle.

Guidelines for Deployed Vehicles

Legal responsibility for every vehicle operated on public roads should be clearly established. Currently, the licensed drivers of Level 0 to 2 vehicles are responsible for their safe operation at all times and are held legally responsible for any violation of law that may occur during operation. The same should be the case with Level 3 ADS-equipped vehicles. Although the licensed driver of a Level 3 ADS-equipped vehicle may cede control of the DDT to the vehicle under certain circumstances or driving conditions, such a vehicle by definition still requires the driver to monitor the DDT and to take control as necessary. A licensed driver, therefore, is still responsible for the safe operation and liable for violations of law during operation.

ADS-equipped vehicles classified as Level 4 or 5, which may be operated without a licensed driver onboard and in which the DDT may be performed independent of human control, warrant consideration of new rules to establish similar responsibility and liability for violations of traffic laws. Registered owners of such vehicles should be responsible for properly maintaining all vehicle equipment and systems, including, but not limited to, the prompt completion of any required updates impacting their operation. It is anticipated therefore that registered owners of such vehicles, as the agents of the operation of such vehicles on public roads, should be responsible for their adherence to applicable laws and subject to legal process as determined by the jurisdiction. Product liability issues arising from such cases may be matters of civil process ex post facto but should not impact the enforcement of laws contemporaneously with operation.

The Automated Vehicles Subcommittee will continue to explore this topic.

Recommendations for Jurisdictions

6.5.2. Clearly establish legal responsibility for every vehicle operating on public roads.

Benefits of Implementation

These guidelines ensure there is a clearly identified party who is legally responsible for the operation of all vehicles at all times and provides law enforcement with a mechanism to enforce traffic safety laws. This will provide clarity to manufacturers, technology developers, law enforcement officers, courts, and vehicle owners of legal responsibility for vehicles of varying automated capabilities.

Challenges to Implementation

The insurance industry may oppose holding registered owners responsible for the operation of the vehicle as opposed to the manufacturer or technology upfitter. Industry may oppose these guidelines as unnecessary regulation that may hinder development and public acceptance of technology adoption.

6.6 Law Enforcement and First Responder Interaction Plans

Background

Law enforcement and first responders engaging with ADS-equipped vehicles will face unique challenges. It is imperative that law enforcement officers and other first responders understand how to safely interact with these vehicles during a traffic enforcement contact or emergency incident. In an emergency, it is imperative
first responders have the ability to render the vehicle safe to protect themselves and the public alike. Law enforcement must also be able to immediately contact those responsible for the vehicle’s operation to gather pertinent information about the vehicle. The Law Enforcement Interaction Plans (LEIP) is developed by the manufacturer or other entity and should be developed in collaboration with law enforcement.

Guidelines for Testing Vehicles

LEIPs should be developed for each unique ADS-equipped vehicle model or aftermarket ADS and provided to all agencies within the vicinity of the ODD of the test vehicle; training outlined in Section 6.8 of this guide should include all information provided in the LEIP. The LEIP should identify the applicable vehicle and system and include, at a minimum:

- how to communicate with the remote driver of the vehicle (if applicable) and verify that the remote driver is a licensed driver (see Section 5.3);
- a contact telephone number, available 24/7/365, to the appropriate manufacturer or their designated technical support personnel;
- where, in the vehicle, to obtain the owner information, vehicle registration, and proof of insurance in the event of a crash or traffic violation involving the vehicle;
- how to safely immobilize and/or tow an ADS-equipped vehicle;
- how to safely remove the vehicle from the roadway;
- how to recognize whether the vehicle is in automated mode and, if possible, how to safely disengage the automated mode;
- how to detect and ensure that the automated mode has been deactivated;
- how to safely interact with electric, hybrid electric, or other alternative fuel power systems as appropriate to the vehicle(s);
- a description of the ODD of the vehicle;
- how law enforcement can verify the training of the remote driver(s); and
- any additional information the manufacturer deems necessary regarding hazardous conditions or public safety risks associated with the operation of the AV.

The LEIP should be reviewed on a regular basis by the manufacturer and updated as necessary but at least annually.

Recommendations for Jurisdictions

6.6.1. Maintain communication with manufacturers to ensure the latest version of the applicable LEIPs are available to law enforcement and other first responders.

Guidelines for Deployed Vehicles

All first responders will require immediate access to the LEIP upon encountering an ADS-equipped vehicle in the field. This may include first responders in remote areas without internet access. As manufacturers publish each LEIP, there should be an established procedure for disseminating new and updated LEIPs, to include hard copy manuals.

Recommendations for Jurisdictions

6.6.2. Designate the lead law enforcement agency in the jurisdiction as a liaison to vehicle manufacturers and other entities for the distribution of the LEIP to all law enforcement agencies and other first responders within that jurisdiction.
Recommendations for Manufacturers and Other Entities

MOE 21. Manufacturers and other entities, in partnership with law enforcement and other first responders, should develop a LEIP in a standardized format for each ADS-equipped model deployed.

MOE 22. The LEIP should be reviewed regularly and updated as necessary but at least annually.

Benefits of Implementation

A LEIP for all ADS-equipped vehicles will protect law enforcement and other first responders, enhance public safety, and prevent unnecessary traffic delays.

Challenges to Implementation

Currently, there is no standardized format for LEIPs or a process for maintaining the most current LEIPs. Without a standardized format, law enforcement and other first responders may have difficulty finding the necessary information quickly.

6.7 Law Enforcement Protocols for Level 4 and 5 Vehicles

Background

Level 4 and 5 ADS-equipped vehicles represent unique challenges to law enforcement and other first responders traditionally focused on human behavior because of their inherent driverless nature and the potential for operation without a human occupant. Protocols should be devised and established to guide law enforcement officers and other first responders in their interactions with Level 4 and 5 ADS-equipped vehicles to better ensure safety and uniform application of the laws.

These protocols should outline appropriate procedures to be followed during emergencies and traffic enforcement situations, including, but not limited to, investigating crashes, traffic or criminal violations, and incidents involving a vehicle with no operator present. It should be noted that although some entities may develop a Law Enforcement Protocol (LEP) that may be agency, or law enforcement specific, entities may want to include development of protocols that are inclusive of considerations faced by the entire first responder community.

Guidelines for Testing and Deployment

LEPs are developed by the lead law enforcement agency in the jurisdiction and are typically shared with other law enforcement agencies in that jurisdiction. LEPs should be developed in cooperation with vehicle manufacturers and test entities as guidance or policy for law enforcement officers in the performance of their duties when interacting with Level 4 and 5 ADS-equipped vehicles. The protocols should identify and include the following details:

- The applicable policies of the law enforcement agency(s) and
- Terms used within the document that may be unfamiliar to officers in the field.
- Specific information from ADS manufacturers or test entities, such as:
 - how to communicate with an ADS-equipped vehicle fleet support specialist during times of operation,
 - how to safely remove the vehicle from the roadway,
 - how to recognize if the vehicle is in automated mode,
 - how to safely tow the vehicle,
 - how to shut off the power source,
The liaison should review the LEP continually and ensure consistency with:

- jurisdictional laws and regulations,
- recommendations from the manufacturer, and
- enforcement guidelines.

6.7.3. Ensure the LEP and LEIP are available to law enforcement officers and first responders with or without an internet connection.

Benefits of Implementation

LEPs provide consistent direction to law enforcement officers and other first responders allowing them to enhance public and first responder safety, prevent unnecessary traffic delays, and take appropriate enforcement action in accordance with federal, jurisdictional, and local laws and regulations.

Challenges to Implementation

A challenge is providing training for all law enforcement officers and first responders to ensure they are knowledgeable prior to coming into contact with a Level 4 or 5 vehicle. See Section 6.8 for more details.

Jurisdictions without specific political direction or legal requirement may be challenged to establish a LEP.

Recommendations for Jurisdictions

6.7.1. LEPs should be developed by the lead law enforcement agency in cooperation with the vehicle manufacturer and test entity and may be vehicle specific. In addition, the protocols should outline any specific federal, jurisdictional, or local laws, regulations, or policies governing Level 4 and 5 ADS-equipped vehicles operating within the law enforcement agency’s jurisdiction.

6.7.2. Designate a liaison within the lead law enforcement agency to be responsible for developing and maintaining the LEP and ensuring its distribution to the law enforcement and first responder community.
restrict movement. Disabling techniques involve ensuring the vehicle is turned off; removing potential reignition sources, such as proximity keys, from the vicinity of the vehicle; and cutting 12-volt power supplies to prevent ignition and depower airbags and seat belt tensioners.

Some or all of these procedures may be applicable to varying degrees to ADS-equipped vehicles. The importance of labeling to assist in vehicle identification is discussed in Section 6.1. Identification strategies that are integrated into the vehicle design will likely be most effective, rather than post-manufacture strategies, such as license plates that lack redundancies and can easily be removed or obscured in a crash. Immobilization and disabling issues may be unique to ADS-equipped vehicles, which have the potential for remote or self-initiation of ignition or movement. Immobilizing and disabling ADS-equipped vehicles may require switches, components, or functionality designed specifically for this purpose, and these functions should be considered in the development of vehicle systems by the OEMs. First responder safety information specific to ADS-equipped vehicles should be identified and disseminated prior to public use or deployment.

Guidelines for Testing Vehicles

The ability of first responders to identify an ADS-equipped vehicle is essential to the safe and effective performance of their specific duties. For the safety of all first responders, manufacturers should permanently label ADS-equipped vehicles that will be tested on public roadways, at a minimum, on the rear and sides of the vehicle (see Section 6.1). For the safety of vehicle occupants and first responders, manufacturers should ensure ADS-equipped vehicles have safety systems or procedures that allow first responders to immobilize or otherwise disable the vehicle post-crash to prevent movement or subsequent ignition of the vehicle. Information regarding these systems and procedures should be made available to other professions do not. Law enforcement officers may encounter ADS-equipped vehicles during traffic stops or other law enforcement related contacts; however, occupant extraction safety training may be more universally applicable.

Although ADS may provide significant safety benefits by reducing human errors, they will inevitably be involved in traffic crashes, especially during the years of initial introduction and integration with the existing motoring population. Because of the potential for unique operational characteristics of ADS, responders to these crashes may be placed at risk if they are not trained for the hazards they may encounter. These hazards include, but may not be limited to:

- silent operation,
- self-initiated or remote ignition,
- high voltage, and
- unexpected movement.

The National Fire Protection Association (NFPA) developed training programs for both fire service and law enforcement to safely respond to crashes involving electric and hybrid electric vehicles. NFPA also provides ongoing training for the fire service on hazards involving a variety of alternative fuel vehicles. The training focuses on three main functions to render the vehicles safe:

1. how to identify the vehicle (and its propulsion system),
2. how to immobilize it, and
3. how to permanently disable it.

Identification of the vehicle at a safe distance is essential and best accomplished through manufacturer labeling (also known as badging) and familiarity with component designs, such as high-voltage orange cabling. Immobilization involves knowing how to place the vehicle transmission in park; set parking brakes; and, if appropriate, chock the wheels to
law enforcement and other first responders in the jurisdiction where the vehicle will be operated (see Section 6.7).

In addition, law enforcement should receive training specific to jurisdictional laws and their application. When training and educational tools become available, they should be disseminated through jurisdiction-level established training bodies. The use of approved training materials allows for uniformity across jurisdictions and their law enforcement agencies. Training should be updated as laws and rules change and when manufacturers make design changes. Primary stakeholders to develop and disseminate training may include associations such as AAMVA, NFPA, CVSA, and International Association of Chiefs of Police (IACP).

Guidelines for Deployed Vehicles

For the safety of law enforcement and other first responders, manufacturers should permanently label ADS, at a minimum, on the rear and sides of the vehicle. Manufacturers should also ensure that ADS-equipped vehicles have safety systems or procedures that allow first responders to immobilize or otherwise disable a vehicle post-crash or during certain law enforcement contacts to prevent movement or subsequent ignition of the vehicle.

National or international standardized law enforcement and other first responder training on safely interacting with vehicles and users should be developed. Jurisdictions should work with manufacturer driver training programs to make training available to law enforcement and other first responders at no cost to agencies.

Recommendations for Jurisdictions

6.8.1. Work with manufacturer driver training programs to make ADS training available to law enforcement and other first responders at no cost to agencies.

Recommendations for Manufacturers and Other Entities

MOE 23. Manufacturers and other entities should ensure ADS-equipped vehicles have safety systems or procedures that allow law enforcement and other first responders to immobilize or otherwise disable the vehicle post-crash or during certain law enforcement contacts to prevent movement or subsequent ignition of the vehicle.

MOE 24. Manufacturers and other entities, in partnership with highway safety stakeholders, should develop national or international standardized first responder training on safely interacting with vehicles and users in both the testing and deployment of ADS-equipped vehicles.

Benefits of Implementation

Training will help prevent injuries or deaths of emergency personnel who respond to crash scenes, the public involved in or near crash scenes or during other law enforcement contacts with ADS-equipped vehicles.

Challenges to Implementation

The lack of standardized training is exacerbated by the absence of a training delivery system that services all law enforcement and other first responders. The NFPA’s Alternative Fuel Vehicles Safety Training is indicative of this challenge. Although the NFPA training has been available for most fire services in the United States for many years, the information has not well permeated the diverse first responder community, resulting in significant vulnerabilities. Even when training is available, another challenge will be keeping training current as the technology continues to evolve.
6.9 Adherence to Traffic Laws

Background

Traffic laws are the purview of jurisdictions, although local jurisdictions may enact additional traffic and parking laws. Although most traffic laws are similar from jurisdiction to jurisdiction, some are jurisdictional specific. For example, although all jurisdictions have laws regarding speed limits, minimum and maximum speed limits may vary significantly between jurisdictions (e.g., roads in some jurisdictions have no specified minimum speed limit). Similarly, traffic laws relative to vehicle movements commonly referred to as “rules of the road,” such as lane changes, left- and right-hand turns, yielding right of way, stopping, passing, and movements in regard to traffic control devices and pedestrian crossings, also vary between jurisdictions.

Where speed limits are concerned, it is common knowledge that compliance with those limits is often low, and drivers often adjust their vehicle speed to that of the prevailing flow of traffic. Users frequently set the vehicle cruise control to speeds that exceed the speed limit. In light of this common practice, there is concern that future drivers of ADS-equipped vehicles may desire similar discretionary control of the maximum operating speed, leading manufacturers to develop ADS-equipped vehicles capable of violating speed limits and other traffic laws. This would be legally imprudent and could be unsafe. However, manufacturers should give consideration to exigent circumstances when it may be necessary to perform maneuvers that may otherwise violate traffic laws, such as following the directions of police officers or flaggers to cross double yellow lines or drive on a sidewalk to avoid hazards such as at a crash scene, a flooded road, or road debris.

Please note impaired driving and distracted driving are addressed in other areas of this report.

Guidelines for Testing and Deployed Vehicles

Jurisdictions should ensure that all vehicles under their authority are required to adhere to all traffic laws and rules of the road, except in legally acceptable exigent circumstances. Jurisdictions will need to examine their traffic laws to identify laws that may not be relevant or appropriate for ADS-equipped vehicles and amend them as necessary. For example, the New York traffic law requiring, in part, that a user maintain at least one hand in control of the steering mechanism at all times may not be appropriate where ADS are concerned. However, because of the uncertainty of their deployment, it is likely premature to modify current traffic laws and regulations to accommodate SAE Level 5 ADS-equipped vehicles at this time.

In October 2018, the TRB published the document NCHRP20-102(07) Implications of Automation for Motor Vehicle Codes to assist jurisdictions with updating their motor vehicle codes as ADS technology continues to evolve.

Additionally, vehicles designed to operate in either automated mode or manual mode should not have the ability to override the ADS settings allowing for violation of traffic laws, without transitioning out of automated mode into manual mode.

Recommendations for Jurisdictions

6.9.1. Refer to Transportation Research Board NCHRP20-102(07) Implications of Automation for Motor Vehicle Codes to identify traffic and other laws that may need to be repealed or revised to accommodate ADS technology.

6.9.2. Jurisdictions should not modify current traffic laws specifically to accommodate SAE Level 5 ADS-equipped vehicles until their development advances to the extent that such amendments and statutes are warranted.
Recommendations for Manufacturers and Other Entities

MOE 25. Manufacturers or other entities should ensure users of vehicles designed to operate in either automated mode or manual mode do not have the ability to override the ADS settings, without transitioning out of automated mode into manual mode, unless faced with a legally acceptable exigent circumstance.

Benefits of Implementation

Ensuring that ADS-equipped vehicles are programmed to comply with all jurisdictional and local traffic laws will contribute to the safe operation of ADS by avoiding the human decision-making process, which currently contributes to most crashes.

Challenges to Implementation

Some drivers may demand more control over the functions of their ADS-equipped vehicles and manufacturer’s desire to accommodate drivers. Additionally, it will be a challenge to ensure the ADS is updated with new and amended traffic laws each legislative session from jurisdiction to jurisdiction.

6.10 Vehicle Response to Emergency Vehicles, Manual Traffic Controls, and Atypical Road Conditions

Background

Traffic safety is often dependent on the ability of a driver to recognize and respond appropriately to a wide variety of hazards in an ever-changing roadway environment. These hazards include, but are not limited to:

- both moving and stopped emergency vehicles;
- emergency workers and other pedestrians manually directing traffic;
- changing traffic patterns or conditions in roadway construction and maintenance zones;
- crash scenes; and
- road debris or other obstructions.

Object and event detection and response (OEDR) refers to the detection by the driver or ADS of any circumstance that is relevant to the immediate driving task, as well as the implementation of the appropriate driver or system response to such circumstance.

Guidelines for Testing and Deployment

Manufacturers should ensure that vehicles operated on public roads, both during testing and deployment, are able to recognize and properly respond to all temporary traffic controls and atypical hazards in the roadway environment. Temporary traffic controls include cone or flare patterns as well as human hand directions and flagging. In addition, vehicles should properly identify, differentiate, and respond to both moving and stopped emergency vehicles and hazard vehicles, such as road maintenance vehicles bearing amber lights. Proper responses should include compliance with move-over laws.

Recommendations for Manufacturers and Other Entities

MOE 26. Manufacturers and other entities should ensure that vehicles operated on public roads, both during testing and deployment, are able to recognize and properly respond to all temporary traffic controls and atypical hazards in the roadway environment.

Benefits of Implementation

Vehicles that adequately respond to changing road conditions will increase safety of first responders, roadway workers, and the public.
Challenges to Implementation

It may not be practicable to replicate every possible road restriction or hazard that may be encountered during ADS-equipped vehicle testing in the real world, and under extraordinary circumstances, it may be necessary to violate laws or rules of the road to safely navigate some hazards safely (e.g., driving on shoulders, disobeying lane markings or signs). In addition, manual traffic control gestures are not universally consistent and may be performed by professionals or nonprofessionals alike. Move-over and other traffic laws are not currently uniform among jurisdictions and adherence to these laws may require geographic awareness.

6.11 System Misuse and Abuse

Background

Misuse of an AV system may be defined as operating automated features improperly or inappropriately, such as failure to take affirmative control of a vehicle when directed to do so by the automated system. Issues of misuse may be linked to training and credentialing and may have a major role in determining crash causation, which distinguishes fault and criminal or civil liability. Law enforcement has the responsibility of determining crash causation whenever possible, but partial or complete automation may make these determinations more difficult to discern from traditional human user errors.

Abuse of an AV system may be defined as the intentional or malicious use of ADS capabilities for some unlawful purpose. Issues of abuse (or intentional misuse as defined above) will likely involve criminal behavior and may have vast implications on public safety. Examples of abuse range from criminal transportation, such as drug running, to cybersecurity breaches or terrorism. Strategies to address both misuse and abuse must consider the myriad of ways to perpetrate each.

One issue is whether new laws or regulations are necessary to deter these behaviors or to assist law enforcement in performance of their duties in prevention and after an incident. The elements of law violations inherent to misuse or abuse already exist, whether or not vehicle technology was employed in the violation of law. For example, a speeding violation is still a speeding violation whether or not cruise control was active at the time of the offense, and vehicles are widely used in the commission of crimes or to transport goods or proceeds of crimes today. In some foreseeable instances, such as vehicular assault or homicide, culpability may be an issue.

Crash and criminal investigation would be greatly aided by electronic records of the HMI. FMVSS codified in 49 CFR/Part 563 currently specifies that certain information be recorded by vehicle event data recorders (EDRs), but the data stored may be inadequate for the forensic need in determining misuse or abuse. In addition to the EDR, the vehicle Central Processing Unit (CPU) stores data not resident in the EDR and may also need to be accessed, under certain circumstances, by law enforcement.

Lack of standard data formatting in a nonproprietary format hinders its usefulness for law enforcement or public safety purposes. Lack of a commercially available tool to access the data also limits EDR usefulness to law enforcement.

Guidelines for Testing Vehicles

It could be assumed that it is far less likely that misuse or abuse would occur in a test environment where users are intimately familiar with the vehicle capabilities and use is highly controlled, recorded, and researched. Nonetheless, because extensive testing occurs on public roads, the public interest demands that researchers and developers record the behavior of the vehicle and the driver–vehicle interface at all times during operation.
Chapter 6: Law Enforcement Considerations

Recommendations for Manufacturers and Other Entities

MOE 27. Manufacturers and other entities, such as researchers and developers, should always record the behaviors of the vehicle and the HMI during operation because extensive testing occurs on public roads.

Guidelines for Deployed Vehicles

Manufacturers should design ADS-equipped vehicles to record both vehicle behavior and the driver–vehicle interface to identify the actions of the vehicle and the actions (or lack thereof) by the driver at all times. This recording mechanism should include GPS and time information to allow investigators to ascertain what occurred, where and when. Precedent is currently established for standardization of data recording in 49 CFR 563 (FMVSS) relative to EDR information, but this information is not time or geo-stamped and is only triggered by the airbag module when the airbag is deployed.

The EDR and CPU information should be stored and retrievable in some recognized, standard, nonproprietary format with a commercially available tool making the data readily accessible by those duly authorized.

Recommendations for Manufacturers and Other Entities

MOE 28. Manufacturers and other entities should design ADS-equipped vehicles to record both vehicle behaviors and the driver–vehicle interface to identify the actions of the vehicle and the actions (or lack thereof) by the human at all times.

MOE 29. Manufacturers and other entities should ensure the EDR and CPU information that accomplishes Recommendation MOE 28 is stored and retrievable in some recognized, standard, nonproprietary, format with a commercially available tool making the data readily accessible by those duly authorized.

Benefits of Implementation

These recommendations will assist law enforcement in determining crash causation and criminal investigation, including, but not limited to, whether system misuse or abuse were involved by providing behavioral information and vehicle performance information in the most serious cases. Users of ADS may be deterred from engaging in misuse or abuse knowing their behaviors are recorded by the vehicle and that information is accessible by law enforcement or others duly authorized.

Challenges to Implementation

Such requirements may be perceived as an unwarranted overreach of governmental authority. EDRs have operated and stored data in proprietary formats for proprietary purposes. Manufacturers can be expected to oppose requirements that dictate what information is captured and accessible to the authorized investigator.
This chapter outlines other considerations to address for ADS-equipped vehicles operated on public roadways, including cybersecurity, data collection, low-speed automated shuttles, CVs, and platooning. There are 41 recommendations in the following five subsections: 38 recommendations directed to jurisdictions for implementation consideration and 3 directed to MOEs.

7.1 Cybersecurity for Vehicles with Automated Driving Systems

Background

Cybersecurity must be a priority in the design and ongoing system development of all motor vehicles to ensure safe operation, traffic and public safety, and national security and should remain a priority for the entire life cycle of ADS-equipped vehicles. This priority must extend to all entrants in the supply chain. Ideally, cybersecurity measures should be designed to protect the safety of the ADS and provide for data privacy (see Section 7.2). This presents significant challenges for MOEs adding ADS to existing vehicle platforms.

The following are recommendations or resources from leading entities:

- **NHTSA** recommends industry undertake a layered approach to harden ADS-equipped vehicles’ electronic architecture against possible attacks, both wireless and wired, to reduce the chances of a successful attack and mitigate any effects of unauthorized access. This layered approach isolates operation critical systems and databases to compartmentalize ramifications of successful security breaches.

- The National Institute of Standards and Technology (NIST) has created a cybersecurity framework that provides a systematic and comprehensive layered cybersecurity approach. Although developed initially for critical infrastructure, it can be used by any sector to improve cybersecurity risk management. The NIST framework specifies five principal pillars: Identify, Protect, Detect, Respond, and Recover.

 Similarly, industry should review and consider information technology security standards and best practices such as the Center for Internet Security’s *Critical Security Controls (CIS CSC) for Effective Cyber Defense*.

- The Auto Information Sharing and Analysis Center (Auto ISAC) serves as a central node for its members for sharing, tracking, and analyzing related intelligence and creates a forum for collaboration for participating entities to share solutions. As such, all cyber threats, vulnerabilities, and incidents should be reported to the Auto ISAC as soon as practical.
Mobility as a Service (MaaS) operations and other ADS integrators present additional driver-related cyber and data security considerations that must be considered and addressed.

Recommendations for Manufacturers and Other Entities

MOE 30. Manufacturers and other entities should use best practices, design principles, and guidance based on or published by NIST, NHTSA, Auto ISAC, and recognized standards-setting bodies such as SAE International standard J3061 *Cybersecurity Guidebook for Cyber-Physical Vehicle Systems*.

MOE 31. All cyber threats, vulnerabilities, or incidents should be reported to the nearest fusion center and to the lead law enforcement agency in the affected jurisdiction if one has been so designated.

Benefits of Implementation

Ensuring cybersecurity industry best practices are incorporated in ADS design and throughout the entire supply chain and life cycle of the ADS-equipped vehicle and during operation throughout the life cycle will aid in preventing incidents and mitigating potential exploitation and subsequent risks to traffic and public safety as well as national security.

Challenges to Implementation

As cybersecurity threats, attacks, and data security breaches continue to evolve at a rapid pace, meeting that pace of change with effective threat prevention, detection, and mitigation strategies is likely to become increasingly difficult. Ensuring necessary security related system updates are performed in a timely manner is another challenge that must be addressed, as well as identifying the party or entity legally responsible for performing such updates.

References

SAE International. Standard J3061 *Cybersecurity Guidebook for Cyber-Physical Vehicle Systems*. https://www.sae.org/standards/content/j3061_201601/

7.2 Data Collection

Background

Vehicles equipped with ADAS and ADS rely on the collection and use of data. ADAS collect data about the driver, their driving habits, and the vehicle. This information is necessary to optimize and personalize the performance of these systems. Additionally, data about the performance of ADS is vital to the evolving technology and improving the systems performing DDTs. EDRs, for instance, were integrated into cars in the 1990s and currently are installed in 90% of vehicles. They can provide valuable information about the vehicle operation and conditions regarding a traffic incident. On-board diagnostic information was required to be included on all vehicles manufactured after 1996. These systems primarily assisted vehicle technicians with service, maintenance, and diagnostics. This information is now being accessed for additional reasons. An example is the collection of information about geolocation data and driver behavior such as speed or aggressive braking habits. This information may even be used to qualify for insurance discounts. The plethora of data collected, the sensitive nature of it, and the potential for both the advancement of safety and potential harm from misuse must be considered.
Chapter 7: Other Considerations

The FTC has the authority to bring actions against companies or individuals that engage in unfair or deceptive acts or practices that include vehicle data privacy and security. The FTC has authority to use law enforcement, policy initiatives, and driver and business education to accomplish its mission. In the motor vehicle context, for example, the FTC could use its enforcement authority in appropriate circumstances to bring an action against a manufacturer that uses a driver’s data in a way that violates the manufacturer’s stated privacy policies.

Guidelines for Testing Vehicles

Automated features in vehicles today may include technologies such as navigation, blind spot detection, automatic emergency braking, parking assist, and lane departure warnings. Other features include “infotainment,” in-car apps, telephone and text connectivity, and in-vehicle internet connectivity.

Many of these features depend on collecting certain data about the driver, the vehicle, and driving habits in order to perform effectively. Some of these data may be collected automatically, and some drivers may choose to provide these data to enable certain functions. For example, for a driver to benefit from navigation and traffic services, the location of the vehicle is generally needed. Similarly, to enable easy hands-free dialing, the driver may choose to sync their phone address book to the vehicle.

Drivers may not realize the connection between the use of the technology and the collection, storage, retrieval, and dissemination of data and the potential impact it has on their privacy.

It is important for drivers to be aware they should review and understand the privacy policies of the manufacturer, as well as any third party with access to the vehicle data. These policies will serve as the main legal mechanism regulating use of data. Drivers may have the right to “opt out” or request additional information not be gathered or not be shared.

Large amounts of data are captured by the vehicle DCM. Such information may aid a crash investigation by revealing pre-and post-crash causative factors and actions. This information may include both the driver and automated system actions when the users of ADS-equipped vehicles are prompted to transition into manual mode because of a failure or malfunction of the automated system.

Manufacturers should ensure ADS record vehicle behavior sensor data and the HMI and should also include time stamping and GPS location in the DCM data.

NHTSA is working closely with the Federal Trade Commission (FTC), which is the primary federal agency that protects drivers’ privacy and personal information. These technologies generate and share a significant amount of vehicle data that are likely to be considered by private citizens as sensitive and personal. NHTSA reiterated that “privacy considerations are critical to driver acceptance of ADS and should be taken into account throughout the design, testing and deployment process.” The agency also indicated that it would continue to work closely with the FTC when motor vehicle safety matters have potential driver privacy implications.

However, opting out may also limit the functionality of some of the features available.

It is also important for drivers to keep in mind that these commitments regarding data collection and use by automobile manufacturers may not extend to other third parties that may also access data in vehicles such as cell phones, apps, or other vehicle devices. Drivers should consult the owner’s manual and work with the vehicle dealer to reset and remove information from the vehicle system.

Recommendations for Jurisdictions

7.2.1. Conduct a thorough review of jurisdictional laws pertaining to the collection and dissemination of data. Particular attention should be given to personally identifiable information and under what circumstances it may appropriately be recorded, maintained, and released. In addition, the issue of transparency should be evaluated: what data are permitted to be collected, how the individual is informed about the collection and use of the data, and whether an affirmative consent be considered.

7.2.2. Provide information about vehicle data collection resources on the jurisdiction’s website to encourage drivers to check with their vehicle manufacturer for information about the collection of data by the systems in their vehicle.

Guidelines for Deployed Vehicles

As manufacturers and technology providers move towards deployment of these vehicles either in a ride-share model or for public sale, they should provide drivers with a baseline understanding of the data being used and their potential privacy implications. The manufacturer or technology providers should work jointly to provide users with information on how these data are being protected. This could be done with data sharing agreements, outlined when an individual chooses to participate or enroll in a ride-share program, or as part of an owner’s manual provided at a retail sale.

Recommendations for Manufacturers and Other Entities

MOE 32. Manufacturers and other entities should comply with industry privacy principles relating to data collection and sharing. Guidelines may include those developed by trade associations that represent vehicle manufacturers and the Automotive Privacy Principles published by the National Automobile Dealers Association, which affirms commitments in three key areas: Transparency, Affirmative Consent for Sensitive Data, and Limited Sharing with government and Law Enforcement.

Benefits of Implementation

It is important to increase awareness of data that is being collected in vehicles, by whom, and how it is being used and shared. Drivers are better protected when vehicle manufacturers follow consistent methods of securing and sharing data.

Challenges to Implementation

Data collection in a vehicle is necessary to ensure the technology in a vehicle can function as it was designed. Therefore, more and more data are being collected and used at the time of collection, but these data are also stored and can be very valuable to many entities. Drivers may not realize the privacy impact of the collection, storage, retrieval, and dissemination of information.
Chapter 7: Other Considerations

7.3 Low-Speed Automated Shuttles

Background

Low-speed automated shuttles are some of the most commonly discussed AVs. Many entities, including local governments, universities, and private communities, have expressed interest in using low-speed automated shuttles to meet specific transportation needs. Low-speed automated shuttles, as envisioned in deployment, will provide low-cost, flexible, and relatively safe transportation in areas such as closed campuses, gated communities, and first-last mile transportation. However, the sheer number of vehicles in development and pilots underway has made condensing the discussion of low-speed automated shuttles fairly challenging.

According to the USDOT’s Low-Speed Automated Shuttles: State of Practice Final Report, low-speed automated shuttles can vary widely in design but generally carry between 4 and 15 passengers, have a top speed of around 25 mph, and are automated at SAE Level 4. However, manufacturers are still trying to identify the best design for a deployable low-speed automated shuttle. As a result, many pilots and tests currently involve low-speed automated shuttles that carry more, fewer, or no passengers or operate at speeds above 25 mph. Some government entities are leading tests and pilots. About the only aspect of low-speed automated shuttles consistent at this time is a desire for the low-speed automated shuttle to operate at a Level 4 or above.

Currently, low-speed automated shuttles are considered noncompliant motor vehicles because they do not fall under an existing FMVSS or CMVSS definitions. Specifically, these shuttles do not generally qualify as low-speed vehicles (LSVs) under the FMVSS or CMVSS because they do not meet existing design standards that apply to LSVs (e.g., top speed, vehicle weight, exterior mirrors). An exemption through NHTSA or Transport Canada is necessary to bring vehicles into U.S. and Canadian markets. Jurisdictions may also not have an existing registration process in place to accommodate this vehicle type.

References

The following are recommendations or resources from leading entities:

It is important to recognize, as well, that certain low-speed automated shuttles may not be FMVSS compliant. The safety and crashworthiness of these vehicles when used in mixed traffic on public roads is unproven, and any jurisdiction considering accommodating on-road applications of these vehicles should do so only after careful consideration.
Guidelines for Testing Vehicles

Low-speed automated shuttles are a subset of AVs designed to meet specific transportation needs. As such, jurisdictions should require low-speed automated shuttles to meet the same registration, titling, and permitting requirements for testing as other AVs.

Recommendations for Jurisdictions

7.3.1. Treat low-speed automated shuttles similar to other AVs for the purposes of permitting and on-road testing (See Section 4.1.)

7.3.2. Give special consideration to the application of additional measures to ensure safety is preserved in test applications (e.g., slow-moving vehicle signage; requirement for shuttles to travel in designated lanes or along the far right-hand side of the roadway; restriction of the shuttle to low-speed municipal roads).

7.3.3. Understand the capabilities, limitations, and performance standards of shuttles before shuttles are tested on public roads, including, but not limited to, safety mechanisms and features, prior testing, vehicle crashworthiness and crash testing, ODD and OEDR, emergency fallback, and the ability of vehicles to operate in mixed traffic.

7.3.4. Require testing entities to confirm that shuttles are constructed to meet all applicable vehicle equipment laws and standards set by federal, state, and provincial governments; shuttles must continue to meet these laws and standards while operated on road.

7.3.5. Work closely with the testing entity or manufacturer throughout testing to address technical issues, receive relevant hardware and software upgrades, and receive technical support.

Require testing entities to:

7.3.6. Confirm the vehicle is capable of operating safely on public roads.

7.3.7. Only operate the shuttle in accordance with the manufacturer’s instructions.

7.3.8. Only operate the shuttle on routes that conform to the manufacturer’s instructions and account adequately for weather, traffic, and road conditions; physical infrastructure and other factors that might compromise safety.

7.3.9. Ensure information on law enforcement interaction is adequately distributed and understood by all relevant parties. (This may include the creation and distribution of a law enforcement interaction plan.)

7.3.10. Confirm that safety drivers are adequately trained in all aspects of shuttle operation and are fully capable of safely operating the shuttles as intended by the manufacturer.

7.3.11. Confirm that safety drivers have been trained to abide by all applicable jurisdictional laws while operating or overseeing the operation of shuttles, including those related to driver licensing and rules of the road.

7.3.12. Outfit the shuttle with appropriate equipment to protect occupants’ safety, which may include, but not be limited to, occupant restraints, hand holds, and appropriate lighting.

Guidelines for Deployed Vehicles

Low-speed automated shuttles are currently considered noncompliant vehicles because they do not conform to an existing vehicle class or definition under the FMVSS or CMVSS. For these vehicles to be deployed on a broad scale in North America,
federal governments would need to develop safety standards specific to low-speed automated shuttles.

Recommendations for Jurisdictions

7.3.13. Be cautious to accommodate on-road deployment of low-speed automated shuttles absent of federal safety standards and a corresponding definition for this vehicle type.

Benefits of Implementation

Low-speed automated shuttles offer jurisdictions the opportunity to realize the benefits of AVs in a manner that is safe and friendly to the public. Low-speed automated shuttles operate at very low speeds and within specific ODDs, which limits operation to safer environments. Additionally, the 2019 AAA study\(^2\) found that although the public was still very uncomfortable with the idea of AVs, the public was more accepting of low-speed automated shuttles. By using low-speed automated shuttles, jurisdictions can help their citizens overcome some of the uncertainty and fear surrounding automated technologies.

Challenges to Implementation

Low-speed automated shuttles are difficult to define because of their rapidly changing designs. As a result, jurisdictions may find it difficult to adequately identify these vehicles in their statutes and regulations such that jurisdictions allow for testing and deployment in a technology-neutral manner. Additionally, many jurisdictions have codified the design requirements an LSV must meet according to FMVSS No. 500. Many low-speed automated shuttles would fall within the definition of an LSV. Although NHTSA’s exemptions would allow these vehicles to operate despite FMVSS No. 500, jurisdictions that have codified FMVSS No. 500 may need to modify their motor vehicle codes.

automated and connected vehicle technologies and including both automated and connected vehicle technologies in a jurisdiction’s transportation planning efforts.

Guidelines for Testing Vehicles

Jurisdictions should require AVs, with or without connected vehicle technologies, to follow the same permitting and registration process (see Section 4.1). CVs with no or little automated technologies (Levels 0–2) should follow the regular registration process, or if the jurisdiction has one, a registration process specifically for CVs. The deciding factor for AVs should be the level of automated technologies present in the vehicle and not the vehicle’s connected technologies.

Recommendations for Jurisdictions

7.4.1. Jurisdictions should require vehicles with connected and automated technologies to follow the permitting and registration process for AVs of the same SAE Level.

7.4.2. Jurisdictions with an ADS-equipped vehicle committee should require the committee members to stay abreast of connected vehicle technologies deployed in the jurisdiction and to inform jurisdiction and local officials involved in connected vehicle technology infrastructure planning and implementation.

Guidelines for Deployed Vehicles

Even after deployment, jurisdictions should keep in mind the capabilities of deployed AVs when continuing plans for improving connected vehicle technology infrastructure.

Recommendations for Jurisdictions

7.4.3. Jurisdictions with an ADS-equipped vehicle committee should require the committee to continue providing updates on ADS-equipped vehicles to jurisdiction and local officials involved in planning and implementing connected vehicle technologies.

Benefits of Implementation

A connected and automated vehicle has the benefit of additional information through connected technologies and advanced, non-impaired decision making by automated technologies. This combination can address two of the most basic factors impacting vehicle safety: knowledge of the road environment and driver awareness. By supporting the simultaneous introduction and deployment of connected and automated vehicle technologies, jurisdictions should see significantly more safety improvements from the use of both types of technology as opposed to the use of just one.

Challenges to Implementation

Significant barriers exist to implementing the transportation environment necessary to support CVs. First, infrastructure updates to allow for the communication between vehicle and infrastructure fixtures is time consuming and costly. It is difficult for jurisdictions to know what infrastructure changes to support, in light of rapidly changing technology.

Second, coordination between manufacturers such that numerous vehicles types could communicate with each other fluidly will likely be very challenging to achieve. Although there has been an increase in company partnerships in recent years, this has yet to result in vehicle systems that communicate easily across multiple manufacturers.
Finally, jurisdictions, localities, and private entities may not have the same goals when implementing connected vehicle technology. This will make it difficult for jurisdictions to know what projects to support.

Because implementing connected vehicle technologies alone is challenging, managing the combined integration of connected and AVs will prove difficult for jurisdictions.

7.5 Platooning

Background

Vehicle platooning is the linking of two or more vehicles using V2V communication technology. The first vehicle in the platoon sets the speed and direction for the rest of the vehicles, enabling them to follow at a close distance on highways. Platooning has the potential to improve safety, create efficiencies, reduce fuel consumption, and increase travel time and road capacity.

Currently, some jurisdictions regulate the following distance of vehicles by indicating the minimum number of feet or meters required between vehicles. Other jurisdictions do not have an actual numeric value as a minimum following distance but indicate there must be a safe or reasonable and prudent distance between vehicles.

Guidelines for Testing Vehicles

Although platooning could involve any type of vehicle, most of the emphasis on the development of the technology is currently placed on truck platooning, in vehicles that may not include ADS equipment. Therefore, for the foreseeable future, a driver is required in each vehicle.

To limit safety risks associated with testing, the following recommendations are provided.

Recommendations for Jurisdictions

7.5.1. Review and update statutes to allow vehicles that are platooning to follow at a reasonable and prudent distance.

7.5.2. Require platoon testing entities to submit an application packet for testing as described in Section 4.1 and issue a permit to test when satisfied with the application and other submitted information.

7.5.3. Require the motor carrier’s safety rating to be in good standing.

7.5.4. Allow testing only on approved limited access highways.

7.5.5. Require disengagement to allow vehicles to enter or exit the highway, in a work zone, in tunnels, and in weight stations, traveling past an incident scene or through toll plazas.

7.5.6. Allow testing only on approved routes.

7.5.7. Do not allow testing in lanes where trucks are prohibited.

7.5.8. Do not allow testing when the roads are snow covered, icy, or in reduced visibility.

7.5.9. Jurisdictions should reserve the right to suspend testing for any reason.

Vehicle Recommendations

7.5.10. Prohibit carrying hazardous materials, oversize or overweight loads, fluids, loose loads, and livestock.

7.5.11. Have the lead vehicle be the heaviest vehicle in the platoon.

7.5.12. Allow only one or two following vehicle combinations.

7.5.13. Each vehicle combination should be limited to a truck or tractor and one trailer combination unit.
7.5.14. Require an identifier on the outside of the vehicle to indicate when the platoon technology is engaged.

7.5.15. School buses or school vehicles with students should not be permitted.

7.5.16. Require escort vehicles with conspicuous lighting in the front and rear of the platoon.

Benefits of Implementation

These recommendations will facilitate communication between jurisdictional officials and entities engaged in platoon operations on their roadways and address many of the associated risks with platooning.

Challenges to Implementation

Jurisdictional laws may need to be updated. Lawmakers and jurisdiction regulators may need to be educated on platooning to understand the benefits and risks. A process should be established to permit platoon testing.

References

The following are recommendations or resources from leading entities.

Pennsylvania Department of Transportation. https://www.penndot.gov/ProjectAndPrograms/ResearchandTesting/Autonomous%20Vehicles/Pages/Platooning.aspx

U.S. Department of Transportation. https://rosap.ntl.bts.gov/view/dot/1038

7.5.14. Require an identifier on the outside of the vehicle to indicate when the platoon technology is engaged.

7.5.15. School buses or school vehicles with students should not be permitted.

7.5.16. Require escort vehicles with conspicuous lighting in the front and rear of the platoon.

Driver Recommendations

7.5.17. Require all drivers to hold an appropriately endorsed and valid CDL.

7.5.18. Require all drivers to receive appropriate training provided by the testing entity.

7.5.19. Drivers must comply with all applicable jurisdictional and federal regulations.

7.5.20. A driver must be in each vehicle, seated in the driver’s seat, prepared to take over control of the vehicle at any time.

Guidelines for Deployed Vehicles

At this time, it is premature to provide guidance for deployed vehicles.
The foundation of this report and the recommendations herein are based on a combination of research, experience, and knowledge accumulated over the past several years by the members of the Automated Vehicles Subcommittee. Because the technology is rapidly evolving, it is critical the Subcommittee continue to learn and share their expertise for the benefit of AAMVA’s members and the community as a whole. Their continued efforts are supported by the AAMVA Board of Directors and federal, jurisdictional, and stakeholders.

To advance its knowledge of the progression of ADAS and ADS-equipped vehicle technology, the Subcommittee will continue to work closely with government entities, industry, and research stakeholders. In addition, the Subcommittee will maintain close contact with jurisdiction government officials and national associations supporting transportation agencies, such as the AASHTO, NCSL, and GHSA. The Subcommittee will continue to work closely with federal, jurisdiction, and local transportation agencies to understand the impacts on government programs and responsibilities and to share their expertise.

The Subcommittee will continue to follow up with manufacturers and NHTSA to discuss recommendations made within this report. The Subcommittee members will attend conferences, seminars, and other forums focused on technology and public policy. The member(s) will participate individually or in groups as attendees, presenters, and panelists because sharing their expertise will be a priority.

Members of the Subcommittee will continue to assist jurisdictions to understand ADAS and ADS-equipped vehicle technology, its impact on government programs, and the recommendations in this report.

The Subcommittee will continue to assist the AAMVA TMS to update model driver’s manuals, knowledge tests, and skills tests to address the use of vehicle technology during driver testing. The Subcommittee will also continue to assist the AAMVA IDEC Board to update driver’s license examiner training materials to address vehicle technology as it emerges.

To keep this report relevant and to provide the best possible guidance to the AAMVA community, it is expected the Subcommittee will update this report periodically. Updates will continue to address MVA and law enforcement concerns related to ADAS and ADS-equipped vehicle testing and deployment.

The Subcommittee is committed to keeping pace with the evolution of vehicle technology, providing timely information and sharing its expertise.
Appendix A

Summary of Recommended Jurisdictional Guidelines for the Safe Testing and Deployment of Automated Driving System–Equipped Vehicles

The following is a summary of guidelines to ensure a framework of consistent regulation and oversight of ADS-equipped vehicles throughout the jurisdictions for the safe testing and deployment of ADS-equipped vehicles in an effort to establish uniformity among jurisdictions. Jurisdictions are not required to follow these guidelines; they are provided as recommendations for jurisdictions that choose to regulate ADS-equipped vehicles.

These guidelines apply to SAE Level 3, 4, and 5 vehicles, described as Conditional Automation, High Automation, and Full Automation, unless otherwise stated.

Chapter 3. Administrative Considerations

3.1 Administration: Recommendations for Jurisdictions

3.1.1. Identify a lead agency to manage the ADS-equipped vehicle committee and its efforts.

3.1.2. Establish an ADS-equipped vehicle committee.

3.1.3. Develop strategies for addressing testing and deployment of ADS-equipped vehicles in the jurisdiction.

3.1.4. Examine jurisdictional laws and regulations to consider barriers to safe testing, deployment, and operation of ADS-equipped vehicles.

3.1.5. Jurisdictions that regulate the testing of ADS-equipped vehicles are encouraged to take necessary steps to establish statutory authority and to use NHTSA’s Automated Driving Systems: A Vision for Safety 2.0 and Preparing for the Future of Transportation: Automated Vehicles 3.0, Ensuring American Leadership in Automated Vehicle Technologies: Automated Vehicles 4.0 published in January 2020 and later updates to frame the regulations.

3.1.6. ADS-equipped vehicle committee members, regulators, and legislators are encouraged to perform knowledge-gathering and information-sharing functions.

3.1.7. The lead agency should designate an AV lead staff member.

3.1.8. The motor vehicle agency should also designate an AV lead staff person if the agency is not the jurisdictional lead AV agency. As the jurisdiction becomes more engaged in the regulation of ADS-equipped vehicles, the lead person may eventually become dedicated to the project. Therefore, funding may be needed in the future for a dedicated position.

3.2 Advanced Driver-Assistance Systems: Recommendations for Jurisdictions

3.2.1 Use consistent terminology to describe ADAS technology in vehicles as national standards are developed.
Chapter 4. Vehicle Considerations

4.1 Application and Permit for Manufacturers and Other Entities to Test Vehicles on Public Roadways: Recommendations for Jurisdictions

4.1.1 Require all manufacturers and other entities testing ADS-equipped vehicles to apply for and be issued vehicle specific permits before testing on public roadways.

4.1.2 Establish a test registration permit application process for ADS-equipped vehicles that does not create unnecessary barriers for manufacturers and other entities and requires the completion or attachment of the information listed in Section 4.1.

4.1.3 Implement a process for denying an application, as well as an appeal process for applicants or permittees whose applications have been denied.

4.1.4 Require test registration permit information be available for verification at the time of vehicle registration issuance (new and renewal) either by presentation from the holder or through electronic means in jurisdictions where manufacturer or other entity-owned vehicles are required to be individually registered.

4.1.5 Require test registration permits to be carried in the test vehicle while present on public roadways until or unless an electronic process has been created by jurisdictions that will allow permit information to be made readily available to law enforcement.

4.2 Actions on Permit Process: Recommendations for Jurisdictions

4.2.1 Develop provisions for suspension, revocation, or fining of any permit holder to test on public roads if permit holders violate permit conditions and reporting such actions to the jurisdiction’s lead law enforcement agency.

4.2.2 Consider the imposition of penalties if the testing entity continues to operate or test in violation of a suspension or revocation order.

4.2.3 Establish a process for reporting traffic law violations to the permit issuing agency.

4.2.4 Have an appeal process for administrative actions taken against a manufacturer or other entity.

4.3 Automated Driving System–Equipped Vehicle Information on the Manufacturer’s Certificate of Origin and Manufacturer’s Statement of Origin: Recommendations for Jurisdictions

4.3.1 Jurisdictions should not initiate a process for titling test vehicles if the jurisdiction does not already require this protocol.

4.4 Titling and Branding for New and Aftermarket Automated Driving System–Equipped Vehicles: Recommendations for Jurisdictions

4.4.1 Record and maintain the test vehicle information in the vehicle record through the normal titling process, through a titling exception process unique to ADS-equipped vehicles or recording vital information in
4.4.2. Title all ADS-equipped vehicles, pursuant to the jurisdiction’s laws or policies; each title should be branded “Automated Driving System.”

4.4.3. Titles for vehicles with added aftermarket components enabling ADS-equipped vehicle functionality should also be branded “Automated Driving System.”

4.4.4. For consistent jurisdictional title branding, it is recommended the OEM or the installer of the aftermarket automated technology (either parts or software) be required to notify the MVA when a motor vehicle has been altered by adding or removing an AV system.

4.5 Vehicle Registration: Recommendations for Jurisdictions

4.5.1. Record and maintain test vehicle information in the vehicle record through the normal registration process, through a registration exception process unique to ADS-equipped vehicles or recording vital information in the database without titling.

4.5.2. Establish uniform language that will benefit law enforcement, the MVA, and other stakeholders for testing ADS-equipped vehicles. Use “Automated Driving System” on the vehicle registration record.

4.5.3. Recognize the registration, title, and plate issued by another titling jurisdiction for purposes of testing.

4.5.4. Establish a field on the registration credential or record for deployed vehicles that indicates “Automated Driving System” for motor vehicles with ADS. See Section 4.4 for more information.

4.5.5. Establish uniform language to aid law enforcement, the MVA, and other stakeholders. Use “Automated Driving System” on the vehicle record.

4.6 License Plates: Recommendations for Jurisdictions

4.6.1. Jurisdictions should not require a special license plate for ADS-equipped vehicles. However, if a jurisdiction chooses to require a special license plate for ADS-equipped vehicles, the plates should adopt the administrative, design, and manufacturing specifications contained in the AAMVA License Plate Standard.

4.7 Financial Responsibility also known as Mandatory Liability Insurance Recommendations for Jurisdictions

4.7.1. Require all ADS-equipped vehicles permitted for on-road testing to have at a minimum liability insurance in the form and manner required by the jurisdiction and FMCSA regulations.

4.7.2. Consider minimum liability insurance requirements for commercial vehicles not covered by the federal regulations that are distinctive from the requirements for personal and private vehicles.
4.7.3. Jurisdictions with higher liability insurance requirements for vehicles used for public transportation today should give special consideration to liability insurance requirements for test vehicles that are designed and manufactured to provide similar transportation services.

4.7.4. Although it is premature to provide specific insurance liability recommendations to jurisdictions, it is not too early for jurisdictions to start considering the new challenges described above when establishing minimum insurance liability on deployed ADS-equipped vehicles.

4.7.5. Consider whether the owner, manufacturer, after market installer or some other person or entity will be the required insured with responsibility for liability insurance.

4.7.6. Consider when a public or semi-public entity has purchased a vehicle for use by drivers, irrespective of whether the drivers are paying for this use.

4.7.7. Consider liability insurance requirements for commercial vehicles not covered by the federal regulations that are distinctive from rates for personal or private vehicles.

4.8 Jurisdictional Approval of the Automated Driving System as the Driver: Recommendations for Jurisdictions

No recommendations provided at this time.

4.9.1. Consider requiring manufacturers and other entities testing ADS-equipped vehicles within the jurisdiction to certify the vehicles comply with all applicable FMVSS or CMVSS, and no required safety devices have been made inoperable. In lieu of the certification, require manufacturers to provide evidence the vehicle(s) have received an exemption from the FMVSS or CMVSS.

4.10 Periodic Motor Vehicle Inspections: Recommendations for Jurisdictions

4.10.1. Jurisdictions should not be expected to create new safety inspection programs for ADS-equipped vehicles during the testing stages. A jurisdiction that currently has such a program should apply its same standard.

4.10.2. Integrate ADS technology maintenance requirements into inspection programs after federal safety standards have been developed; minimum program requirements should reflect federal safety standards when possible. Support a committee or task force to lead and explore integrating ADS technology into jurisdictions inspection programs.

4.10.3. Jurisdictions should continue to work closely with manufacturers and other entities to understand mechanisms for verifying the safety and functionality of current ADAS and ADS technology components, and how safety might be discerned in the future.
Chapter 5. Driver Licensing Considerations

5.1 Driver and Passenger Roles Defined: Recommendations for Jurisdictions

5.1.1. Use the SAE International definitions provided in Chapter 2.

5.1.2. As discussed in Section 3.1, jurisdictions should review the resource *Implications of Automation for Motor Vehicle Codes*, which may be a useful guide for updating laws and regulations.

5.2 Driver's License Requirements for Testing by Manufacturers and Other Entities: Recommendations for Jurisdictions

5.2.1. Review and develop or adapt existing rules, if applicable, regarding vehicle operation to ensure ADS-equipped vehicle testing is permitted.

5.2.2. Require test ADS-equipped vehicles be operated solely by employees, contractors, or other persons designated by the manufacturer of the ADS-equipped vehicle or any such entity involved in the testing of the ADS-equipped vehicle.

5.2.3. Require test drivers to receive training and instruction related to, but not limited to, the capabilities and limitations of the vehicle and be subject to a background check as described in Section 6.3.

5.2.4. Require training provided to the employees, contractors, or other persons designated by the manufacturer or entity to be documented and a summary of the training be submitted to the jurisdiction's AV lead agency along with other required information.

5.2.5. Support the safe testing without a human driver inside of the vehicle by requiring a user designated by the manufacturer of the ADS technology or any such entity involved in the driverless testing of the ADS-equipped vehicle to be capable of assuming control of the vehicle's operations or require that the ADS has the ability to achieve a minimal risk condition.

5.2.6. Take steps to ensure motor vehicle laws allow for the manufacturer to safely test Level 4 and 5 vehicles without a licensed driver, provided a user designated by the manufacturer or any such entity involved in the driverless testing of the ADS-equipped vehicle, is capable of assuming control of the vehicle's operations or require that the ADS has the ability to achieve a minimal risk condition.

5.2.7. Consider requiring manufacturers and other entities testing ADS-equipped vehicles within the jurisdiction to certify the vehicles comply with all applicable FMVSS or CMVSS, and no required safety devices have been made inoperable. In lieu of the certification, evidence the vehicle(s) have received an exemption from the FMVSS or CMVSS should be required. See section 4.9.

5.3 Remote Driver: Recommendations for Jurisdictions

5.3.1. Define “remote driver” in statutes by adopting the SAE International definition and review the SAE International document J3016 dated June 2018 *Taxonomy and Definitions for Terms Related to Driving*.
Appendix A: Summary of Recommended Jurisdictional Guidelines

Automation Systems for On-Road Motor Vehicles for additional information and further explanation of the definition.

5.3.2. Require the testing entity to agree in writing that a remote driver would be subject to an operator fitness evaluation by law enforcement in the event of an incident or crash.

5.3.3. Clarify in law that all laws applicable to drivers also apply to remote drivers.

5.3.4. Review current license restrictions and endorsements to determine which apply to a remote driver and when a remote driver must comply with the restriction or endorsement. For example, restrictions could apply include corrective lenses, hearing devices, and accommodations for missing limbs.

5.3.5. Driver’s license program staff and law enforcement need to understand remote driving and be well versed in responding to inquiries.

5.3.6. Require manufacturers and other entities testing vehicles using a remote driver to notify the jurisdiction’s lead AV agency, comply with all other testing requirements and to provide the names and driver’s license information for all remote drivers.

5.3.7. Require documentation from the manufacturers and other entities that remote drivers have been trained to safely operate the vehicle remotely.

Recommended Requirements for Remote Test Drivers

5.3.8. Comply with all federal and jurisdictional laws unless otherwise exempt.

5.3.9. Hold the class of license for the vehicle they are driving.

5.3.10. Be physically located in the same jurisdiction as the vehicle they are driving.

5.3.11. Inform their employer immediately of any moving violations.

5.3.12. Be fit to drive and not be impaired or distracted.

5.3.13. Remotely drive only one vehicle at a time.

5.3.14. Be at a specific location and not drive remotely from another vehicle. (It should be noted that remote driving is not the same as driving a lead vehicle in a platoon of vehicles.)

5.3.15. Make available to law enforcement, upon request, their name, physical location, license number, and jurisdiction of issue, as well as the name and contact information of their employer.

5.3.16. Report a crash immediately to the appropriate law enforcement in the jurisdiction in which the vehicle is located.
Recommended Requirements for Test Vehicle Owners

5.3.17. Post the responsible party’s name and contact information within a remotely operated vehicle.

5.3.18. Testing entities should verify remote test driver’s driving records at least annually.

Recommendations for Law Enforcement

5.3.19. Support the enactment of laws that require the officer to charge the remote driver with the violation and, if convicted, to hold the remote driver responsible. For other nondriving violations, such as lights not working, the remote driver should be held responsible unless they provide the registered owner’s name and contact information and the registered owner is charged with the violation.

5.4 Endorsements and Restrictions for Deployed Vehicles: Recommendations for Jurisdictions

5.4.1. Do not establish endorsements or restrictions on driver’s licenses at this time, specifically for ADS-equipped vehicles.

5.4.2. Take steps to ensure jurisdictional motor vehicle laws allow for the operation of Level 4 and 5 ADS-equipped vehicles without a driver if the vehicle cannot be operated in manual mode.

5.4.3. Do not limit the operation of Level 4 and 5 ADS-equipped vehicles to individuals who are licensed as drivers.

5.4.4. Do not impose any other requirements, such as licensure, sobriety, or clean driving history, for nondrivers to use Level 4 and 5 ADS-equipped vehicles.

5.4.5. Review jurisdictional laws and regulations related to unsupervised children in motor vehicles to ensure safety.

5.5 Driver Training for Drivers on Vehicle Technologies: Recommendations for Jurisdictions

5.5.1. Promote driver training on the use of ADAS and ADS-equipped vehicle functions.

5.5.2. Encourage communication between dealers and drivers including, but not limited to, acknowledgement of the sections in the vehicle “owner’s manual” related to the ADAS and ADS-equipped vehicle functions from a fully qualified driver educator.

5.5.3. Encourage manufacturers, dealers, and insurance companies to provide incentives for drivers to receive proper training on the use of ADAS and ADS-equipped vehicle functions.

5.5.4. Encourage aftermarket system manufacturers and dealers to provide education materials and resources to drivers.

5.6 Training for Driver Educators, Driver Education and Driver Training Programs: Recommendations for Jurisdictions

5.6.1. Require driver education curricula to contain information on ADAS and ADS-equipped vehicles and to provide behind-the-wheel instruction using this technology.
5.6.2 Require all definitions and language on ADAS and ADS-equipped vehicles provided in driver education to be taken from SAE or AAMVA’s guidelines for consistency.

5.6.3 Establish standards and materials for required training of driver educators on the use of ADAS and ADS-equipped vehicles.

5.7 Driver’s License Skills Testing with Vehicle Technologies: Recommendations for Jurisdictions

5.7.1 Include ADAS and ADS information on vehicle technologies in the jurisdiction’s driver’s manual when provided by the AAMVA TMS.

5.7.2 Include questions addressing ADAS and ADS in the jurisdictional knowledge test, when provided by the AAMVA TMS.

5.7.3 Jurisdictions should not allow the applicant to use convenience technologies, such as the parking assist feature, for skills examination or parking maneuvers during the skills examination.

5.7.4 Allow the applicant to use safety-critical technologies during skills examinations. These technologies, such as backup or other cameras, should not be disengaged during examinations.

5.7.5 Jurisdictions should not require applicants to deactivate safety-critical technologies during the skills examination process.

5.8 Training Motor Vehicle Agency Examiners on Vehicle Technologies: Recommendations for Jurisdictions

5.8.1 Provide training to driver’s license examiners on vehicle technologies, including the operation of ADAS and ADS-equipped vehicles. AAMVA’s Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems resource guide, published in 2019, should be used in examiner training.

5.8.2 Use AAMVA’s IDEC model training materials, when updated, to assist with ADAS and ADS examiner training requirements.

5.8.3 Require all definitions and language on ADAS and ADS-equipped vehicles provided to driver’s license examiners use the SAE International or AAMVA’s guidelines for consistency.

5.9 Training Motor Vehicle Agency Staff on Vehicle Technologies: Recommendations for Jurisdictions

5.9.1 MVA senior managers and applicable staff should be aware of MOE ADS-equipped vehicle testing and their jurisdiction’s regulatory approach.

5.9.2 Provide general training to MVA staff on vehicle technologies, including what the technology does and how it works. AAMVA’s Guidelines for Testing Drivers in Vehicles with Advanced Driver-Assistance Systems resource guide, published in 2019, should be used when training driver licensing staff (see Section 5.8.)
5.9.3. Require all definitions and language on ADAS and ADS-equipped vehicles provided to MVA staff use the SAE International and AAMVA’s guidelines for consistency.

5.9.4. Begin to expose staff to vehicle technology by incorporating some general education in staff meetings. This could include showing videos, graphics, and pictures of vehicles equipped with ADAS and ADS.

5.10 Commercial Driver Licensing: Recommendations for Jurisdictions

5.10.1. Require commercial vehicle test drivers to have a CDL and appropriate endorsements and restrictions for the vehicles they are testing.

5.10.2. Require the CDL test driver to be located inside the vehicle unless specifically approved to test the vehicle with the CDL test driver outside the vehicle or remotely located.

5.10.3. Require manufacturers and other entities that are testing ADS technologies on commercial vehicles to follow all regulations for companies that hire CDL drivers are required to follow.

5.10.4. Require compliance with all regulations related to the vehicle and the load being transported.

5.10.5. Engage in the review and development of federal regulations by FMCSA.

5.10.6. Review and adopt amendments to jurisdictional laws as federal regulations are updated.

Chapter 6. Law Enforcement Considerations

6.1 Vehicle Identification: Recommendations for Jurisdictions

6.1.1. Enact requirements for permanent labeling on the rear and sides of an ADS vehicle to better identify vehicle capabilities and improve safety, and regulatory control.

6.2 Crash and Incident Reporting: Recommendations for Jurisdictions

6.2.1. Require ADS test entity to submit to the jurisdiction crash-related information and a summary of the analysis of the incident to expand the amount of ADS data and research.

6.2.2. U.S. jurisdictions should adopt the MMUCC 5th Edition (August 2017) recommendation as soon as practicable.

6.3 Criminal Activity: Recommendations for Jurisdictions

6.3.1. Jurisdictions that have ADS-equipped vehicle permitting requirements as described in Section 4.1 should require the designated test users (employees, contractors and other persons) to pass a background check, including, but not limited to, a driver history review and a criminal history check, prior to authorization to operate an ADS-equipped test vehicle.

6.3.2. Jurisdictions that have ADS-equipped vehicle permitting requirements as described in Section 4.1 should establish provisions which disqualify a test user who has a criminal record or a driving history that includes driving
under the influence, reckless driving,
or other significant conviction history
from operating an ADS-equipped test
vehicle in a test environment.

6.4 Distracted Driving: Recommendations for
Jurisdictions

6.4.1. Consider the level of automation to
which their distracted driving laws will
apply.

6.5 Establishing Operational Responsibility
and Law Enforcement Implications:
Recommendations for Jurisdictions

6.5.1. Define what enforcement actions
can be taken and who or what is
responsible when there is no human
onboard an automated test vehicle.

6.5.2. Clearly establish legal responsibility for
every vehicle operating on public roads.

6.6 Law Enforcement and First Responder
Interaction Plans: Recommendations for
Jurisdictions

6.6.1. Maintain communication with
manufacturers to ensure the latest
version of the applicable LEIPs are
available to law enforcement and other
first responders.

6.6.2. Designate the lead law enforcement
age agency in the jurisdiction as a liaison
to vehicle manufacturers and other
entities for the distribution of the
LEIP to all law enforcement agencies
and other first responders within that
jurisdiction.

6.7 Law Enforcement Protocols for Level 4
and 5 Vehicles: Recommendations for
Jurisdictions

6.7.1. LEPs should be developed by the lead
law enforcement agency in cooperation
with the vehicle manufacturer and test
entity and may be vehicle specific. In
addition, the protocols should outline
any specific federal, jurisdictional,
or local laws, regulations or policies
governing Level 4 and 5 ADS-
equipped vehicles operating within the
local enforcement agency's jurisdiction.

6.7.2. Designate a liaison within the lead law
enforcement agency to be responsible
for developing and maintaining the
LEP and ensuring its distribution
to the law enforcement and first
responder community. The liaison
should review the LEP continually and
ensure consistency with:

- jurisdictional laws and regulations,
- recommendations from the
 manufacturer, and
- enforcement guidelines.

6.7.3. Ensure the LEP and LEIP are available
to law enforcement officers and first
responders with or without an internet
connection.

6.8 Law Enforcement and First Responder
Safety and Training: Recommendations for
Jurisdictions

6.8.1. Work with manufacturer driver
training programs to make ADS
training available to law enforcement
and other first responders at no cost to
agencies.
6.9 Adherence to Traffic Laws: Recommendations for Jurisdictions

6.9.1. Refer to Transportation Research Board NCHRP20-102(07) Implications of Automation for Motor Vehicle Codes to identify traffic and other laws that may need to be repealed or revised to accommodate ADS technology.

6.9.2. Jurisdictions should not modify current traffic laws specifically to accommodate SAE Level 5 ADS-equipped vehicles until their development advances to the extent that such amendments and statutes are warranted.

Chapter 7. Other Considerations

7.2 Data Collection: Recommendations for Jurisdictions

7.2.1. Conduct a thorough review of jurisdictional laws pertaining to the collection and dissemination of data. Particular attention should be given to personally identifiable information and under what circumstances it may appropriately be recorded, maintained, and released. In addition, the issue of transparency should be evaluated: what data are permitted to be collected, how the individual is informed about the collection and use of the data, and whether an affirmative consent be considered.

7.2.2. Provide information about vehicle data collection resources on the jurisdiction’s website to encourage drivers to check with their vehicle manufacturer for information about the collection of data by the systems in their vehicle.

7.3 Low-Speed Automated Shuttles: Recommendations for Jurisdictions

7.3.1. Treat low-speed automated shuttles similar to other AVs for the purposes of permitting and on-road testing (See Section 4.1.)

7.3.2. Give special consideration to the application of additional measures to ensure safety is preserved in test applications (e.g., slow-moving vehicle signage; requirement for shuttles to travel in designated lanes or along the far right-hand side of the roadway; restriction of the shuttle to low-speed municipal roads).

7.3.3. Understand the capabilities, limitations, and performance standards of shuttles before shuttles are tested on public roads, including but not limited to safety mechanisms and features, prior testing, vehicle crashworthiness and crash testing, ODD and OEDR, emergency fallback, and the ability of vehicles to operate in mixed traffic.

7.3.4. Require testing entities to confirm that shuttles are constructed to meet all applicable vehicle equipment laws and standards set by federal, state, and provincial governments; shuttles must continue to meet these laws and standards while operated on road.

7.3.5. Work closely with the testing entity or manufacturer throughout testing to address technical issues, receive relevant hardware and software upgrades, and receive technical support.
Require testing entities to:

7.3.6. Confirm the vehicle is capable of operating safely on public roads.

7.3.7. Only operate the shuttle in accordance with the manufacturer’s instructions.

7.3.8. Only operate the shuttle on routes that conform to the manufacturer’s instructions and account adequately for weather, traffic, and road conditions; physical infrastructure and other factors that might compromise safety.

7.3.9. Ensure information on law enforcement interaction is adequately distributed and understood by all relevant parties. (This may include the creation and distribution of a law enforcement interaction plan.)

7.3.10. Confirm that safety drivers are adequately trained in all aspects of shuttle operation and are fully capable of safely operating the shuttles as intended by the manufacturer.

7.3.11. Confirm that safety drivers have been trained to abide by all applicable jurisdictional laws while operating or overseeing the operation of shuttles, including those related to driver licensing and rules of the road.

7.3.12. Outfit the shuttle with appropriate equipment to protect occupants’ safety, which may include, but not be limited to, occupant restraints, hand holds, and appropriate lighting.

7.3.13. Jurisdictions should be cautious to accommodate on-road deployment of low-speed automated shuttles absent of federal safety standards and a corresponding definition for this vehicle type.

7.4 Connected Vehicles: Recommendations for Jurisdictions

7.4.1. Jurisdictions should require vehicles with connected and automated technologies to follow the permitting and registration process for AVs of the same SAE Level.

7.4.2. Jurisdictions with an ADS-equipped vehicle committee should require the committee members to stay abreast of connected vehicle technologies deployed in the jurisdiction and to inform jurisdiction and local officials involved in connected vehicle technology infrastructure planning and implementation.

7.4.3. Jurisdictions with an ADS-equipped vehicle committee should require the committee to continue providing updates on ADS-equipped vehicles to jurisdiction and local officials involved in planning and implementing connected vehicle technologies.

7.5 Platooning: Recommendations for Jurisdictions

7.5.1. Review and update statutes to allow vehicles that are platooning to follow at a reasonable and prudent distance.

7.5.2. Require platoon testing entities to submit an application packet for testing as described in Section 4.1 and issue a permit to test when satisfied with the application and other submitted information.

7.5.3. Require the motor carrier’s safety rating to be in good standing.

7.5.4. Allow testing only on approved limited access highways.
7.5.5. Require disengagement to allow vehicles to enter or exit the highway, in a work zone, in tunnels, and in weight stations, traveling past an incident scene or through toll plazas.

7.5.6. Allow testing only on approved routes.

7.5.7. Do not allow testing in lanes where trucks are prohibited.

7.5.8. Do not allow testing when the roads are snow covered, icy, or in reduced visibility.

7.5.9. Jurisdictions should reserve the right to suspend testing for any reason.

Vehicle Recommendations

7.5.10. Prohibit carrying hazardous materials, oversize or overweight loads, fluids, loose loads, and livestock.

7.5.11. Have the lead vehicle be the heaviest vehicle in the platoon.

7.5.12. Allow only one or two following vehicle combinations.

7.5.13. Each vehicle combination should be limited to a truck or tractor and one trailer combination unit.

7.5.14. Require an identifier on the outside of the vehicle to indicate when the platoon technology is engaged.

7.5.15. School buses or school vehicles with students should not be permitted.

7.5.16. Require escort vehicles with conspicuous lighting in the front and rear of the platoon.

Driver Recommendations

7.5.17. Require all drivers to hold an appropriately endorsed and valid CDL.

7.5.18. Require all drivers to receive appropriate training provided by the testing entity.

7.5.19. Drivers must comply with all applicable jurisdictional and federal regulations.

7.5.20. A driver must be in each vehicle, seated in the driver's seat, prepared to take over control of the vehicle at any time.
Appendix B Summary of Recommendations for Manufacturers and Other Entities for the Safe Testing and Deployment of Automated Driving System–Equipped Vehicles

The subcommittee offers the following recommendations for manufacturers and other entities for the safe testing and deployment of ADS-equipped vehicles. These guidelines come from the recommendations provided in the report. Manufacturers and other entities are not required to follow these recommendations; however, they are provided to ensure the safe testing and deployment of ADS-equipped vehicles.

These guidelines apply to SAE Levels 3, 4, and 5, described as conditional automation, high automation, and full automation, respectively, unless otherwise stated.

Chapter 3. Administrative Considerations

3.1 Administration: Recommendations for Manufacturers and Other Entities

MOE 1. Manufacturers and other entities should interact with and respond to jurisdictional ADS-equipped vehicle committee questions and requests.

3.2 Advanced Driver-Assistance Systems: Recommendations for Manufacturers and Other Entities

MOE 2. Manufacturers and other entities should adopt consistent terminology to describe ADAS technology in vehicles.

Chapter 4. Vehicle Considerations

4.3 Automated Driving System–Equipped Vehicle Information on the Manufacturer’s Certificate of Origin and Manufacturer’s Statement of Origin: Recommendations for Manufacturers and Other Entities

MOE 3. Vehicle manufacturers should indicate it is an ADS-equipped vehicle on the MCO, MSO, or NVIS. This functionality should be listed in a new field on the MCO, MSO, or NVIS to avoid confusion with existing information.

4.4 Titling and Branding for New and Aftermarket Automated Driving System–Equipped Vehicles: Recommendations for Manufacturers and Other Entities

MOE 4. The OEM or the installer of the aftermarket automated technology, either parts or software systems, should notify the MVA when a motor vehicle has been altered by adding or removing an AV technology.

4.10 Periodic Motor Vehicle Inspections: Recommendations for Manufacturers and Other Entities

MOE 5. Manufacturers and other entities should ensure all technology being tested on public roads is safe.

Chapter 5. Driver Licensing Considerations

5.1 Driver and Passenger Roles Defined: Recommendations for Manufacturers and Other Entities

MOE 6. Manufacturers and other entities should use the SAE International definitions provided in Chapter 2.
5.2 Driver’s License Requirements for Testing by Manufacturers and Other Entities: Recommendations for Manufacturers and Other Entities

MOE 7. Manufacturers and other entities should complete a background check and provide or ensure appropriate training for ADS-equipped vehicle test drivers. See Section 6.3 on background checks.

5.5 Driver Training for Drivers on Vehicle Technologies: Recommendations for Manufacturers and Other Entities

MOE 8. Manufacturers and dealers should take steps to make training available to drivers to ensure they understand the functionality of the vehicle and are prepared to properly operate them.

5.7 Driver’s License Skills Testing with Vehicle Technologies: Recommendations for Manufacturers and Other Entities

MOE 9. Manufacturers and other entities that develop an ADS-equipped vehicle that can be fully operated by a human or fully operated by an ADS should consider taking steps to prevent the human-operated mode from being engaged in error. The working group is concerned that a passenger in a dual-mode ADS-equipped vehicle who does not have a driver’s license could engage the mode that requires a human driver to intervene.

Chapter 6. Law Enforcement Considerations

6.1 Vehicle Identification: Recommendations for Manufacturers and Other Entities

MOE 10. Manufacturers should develop international consensus standards for a system of external-facing permanent labeling of ADS vehicles.

6.2 Crash and Incident Reporting: Recommendations for Manufacturers and Other Entities

MOE 11. Manufacturers should design ADS to record vehicle location, behavior sensor data, and the HMI. Law enforcement should be provided with access to this information as well as a minimum of 30 seconds pre-crash through the end of the crash event (cessation of involved vehicle movement) for completing a proper investigation.

MOE 12. In addition to complying with the requirements of 49 CFR Part 563, manufacturers should make DCM information retrievable in a standard, nonproprietary format for ready access by those duly authorized.

MOE 13. Manufacturers should include time stamping and GPS location in DCM data.

6.3 Criminal Activity: Recommendations for Manufacturers and Other Entities

MOE 14. The manufacturer or other entity, operating in jurisdictions not requiring ADS-equipped vehicle permits, should require the designated test user to pass a background check, including, but not limited to, a driver history review and a criminal history.
check, prior to authorization to operate an ADS-equipped test vehicle.

MOE 15. The manufacturer or other entity, operating in jurisdictions not requiring ADS-equipped vehicle permits, should disqualify a test user who has a criminal record or poor driving history from operating an ADS-equipped test vehicle in a test environment.

MOE 16. Manufacturers should ensure ADS-equipped vehicles leave an electronic fingerprint that can allow tracing of input data to whomever initiated the activity.

6.4 Distracted Driving: Recommendations for Manufacturers and Other Entities

MOE 17. Manufacturers and other entities should minimize distractions in ADS-equipped vehicles.

MOE 18. Manufacturers and other entities should prohibit users from all added distracting activities when testing any ADS-equipped vehicle.

MOE 19. Manufacturers and other entities should design ADS-equipped vehicles with a means of identifying when a vehicle is in automated mode to facilitate effective enforcement of distracted driving laws (e.g., so an officer knows if using a hand-held device is legal at the time of observation).

MOE 20. Manufacturers and other entities should minimize distractions in ADS-equipped vehicles.

6.6 Law Enforcement and First Responder Interaction Plans: Recommendations for Manufacturers and Other Entities

MOE 21. Manufacturers and other entities, in partnership with law enforcement and other first responders, should develop a LEIP in a standardized format for each ADS-equipped model deployed.

MOE 22. The LEIP should be reviewed regularly and updated as necessary but at least annually.

6.8 Law Enforcement and First Responder Safety and Training: Recommendations for Manufacturers and Other Entities

MOE 23. Manufacturers and other entities should ensure ADS-equipped vehicles have safety systems or procedures that allow law enforcement and other first responders to immobilize or otherwise disable the vehicle post-crash, or during certain law enforcement contacts to prevent movement or subsequent ignition of the vehicle.

MOE 24. Manufacturers and other entities, in partnership with highway safety stakeholders, should develop national or international standardized first responder training on safely interacting with vehicles and users in both the testing and deployment of ADS-equipped vehicles.

6.9 Adherence to Traffic Laws: Recommendations for Manufacturers and Other Entities

MOE 25. Manufacturers and other entities should ensure users of vehicles designed to operate in either automated mode or manual mode do not have the ability to override the ADS settings, without transitioning out of automated mode into manual mode, unless faced with a legally acceptable exigent circumstance.
6.10 Vehicle Response to Emergency Vehicles, Manual Traffic Controls and Atypical Road Conditions: Recommendations for Manufacturers and Other Entities

MOE 26. Manufacturers and other entities should ensure that vehicles operated on public roads, both during testing and deployment, be able to recognize and properly respond to all temporary traffic controls and atypical hazards in the roadway environment.

6.11 System Misuse and Abuse: Recommendations for Manufacturers and Other Entities

MOE 27. Manufacturers and other entities, such as researchers and developers, should always record the behaviors of the vehicle and the HMI during operation because extensive testing occurs on public roads.

MOE 28. Manufacturers and other entities should design ADS-equipped vehicles to record both vehicle behaviors and the driver–vehicle interface to identify the actions of the vehicle and the actions (or lack thereof) by the human at all times.

MOE 29. Manufacturers and other entities should ensure the EDR and CPU information that accomplishes Recommendation MOE 28 is stored and retrievable in some recognized, standard, nonproprietary, format with a commercially available tool making the data readily accessible by those duly authorized.

Chapter 7. Other Considerations

7.1 Cybersecurity for Vehicles with Automated Driving Systems: Recommendations for Manufacturers and Other Entities

MOE 30. Manufacturers and other entities should use best practices, design principles, and guidance based on or published by NIST, NHTSA, Auto ISAC, and recognized standards-setting bodies such as SAE International standard J3061 *Cybersecurity Guidebook for Cyber-Physical Vehicle Systems*.

MOE 31. All cyber threats, vulnerabilities, or incidents should be reported to the nearest fusion center and to the lead law enforcement agency in the affected jurisdiction if one has been so designated.

7.2 Data Collection

MOE 32. Manufacturers and other entities should comply with industry privacy principles relating to data collection and sharing. Guidelines may include those developed by trade associations that represent vehicle manufacturers and the Automotive Privacy Principles published by the National Automobile Dealers Association, which affirms commitments in three key areas: Transparency, Affirmative Consent for Sensitive Data, and Limited Sharing with government and Law Enforcement.
Appendix C Automated Vehicles Subcommittee Roster (2019–2020)

MEMBERS

Bernard Soriano Ph.D., Chair
Deputy Director
California DMV

James Fackler, Vice Chair
Director, Office of Program Support
Customer Services Administration
Michigan Secretary of State

Lt. Col. Richard Arnold
Michigan State Police

Christopher Caras
Director, Driver License Division
Utah Department of Public Safety

Assistant Chief Chris Childs
California Highway Patrol

Marcy Coleman
Assistant Administrator for Safety & Regulations
Rhode Island Division of Motor Vehicles

Wendy Doyle
Executive Director, Office of Traffic Safety
Alberta Transportation

Captain John Ehmsen
Colorado State Patrol

David Glasser
General Counsel
District of Columbia, DMV

Christopher Ialuna
Bureau Chief, Registration Bureau
New Hampshire DMV

Kevin Jacobs
Office of Performance Management
Florida Department of Highway Safety & Motor Vehicles

Kevin Lacy
State Traffic Engineer
North Carolina Department of Transportation

Staff Sergeant Terence McDonnell
Traffic Services
New York State Police

Robert Rowland
CDL/Motor Carrier Coordinator
Massachusetts RMV

April Sanborn
DMV Services Manager III
Management Services & Programs Division
Nevada Department of Motor Vehicles

Courtney Saxon
Deputy Director Field Services
South Carolina Department of Motor Vehicles

Kara Templeton
Director, Driver Services
PA Department of Transportation

Erik Thomsen
Team Leader, Special Projects
Ontario Ministry of Transportation

Keri Washabaugh
Executive Director, Titles & Registrations
Indiana Bureau of Motor Vehicles

Daniel Yeh
Manager, Vehicle Services
Iowa Department of Transportation
FEDERAL PARTNERS

Jacqueline Milani
Senior Highway Safety Specialist, Enforcement & Justice Services Division
NHTSA

Selika Gore
Senior Advisor, Office of the Administrator
FMCSA

AAMVA STAFF

Cathie Curtis
Director, Vehicle Programs
Project Manager

Casey Garber
Manager, Vehicle Programs

Brian Ursino
Director, Law Enforcement

CONSULTANTS

Brett Robinson
Vice President
Highway Safety Services, LLC

Christie Falgione
Project Manager
Highway Safety Services, LLC
Overview of Nevada’s Driver Examiner Training on Advanced Driver-Assistance Systems

Driver Examiner Acceptance of Advanced Driver-Assistance Systems (Adas) Technologies in Nevada

1. ISSUE
 The Driver Examiners from the Nevada Department of Motor Vehicles (DMV), expressed concern over the advanced technologies present in vehicles used for the drive examination. Our Management Services and Programs Division, along with our internal Autonomous Vehicle Executive Committee conducted research and discovered an inconsistent practice in the acceptance of safety critical and convenience technology allowances within our Field Offices.

2. RESEARCH
 Collectively, we made the decision to reach out to the Nevada Franchise Dealers Association to request their assistance in establishing a statewide training event. Several Nevada dealers welcomed the partnership and offered to train our examiners, supervisors and managers.

3. TRAINING EVENT
 a. We embarked on 3 training locations to include our Northern and Southern employees. This required a great deal of planning to first, select the best dates and times for all stakeholders, second, block out the drive exams for those dates and times and third, create a safe, effective and efficient training program.

 b. The dealerships were extremely helpful in providing expert personnel to discuss the technology features in select vehicle makes and models. Our examiners had the opportunity to review NHTSA’s latest publication Vehicle Shopper’s Guide – Driver Assistance Technologies prior to the training event. This was a valuable tool which served to aid the examiners in understanding the terminology.

 c. Understanding that our examiners take their responsibilities very serious, could sometimes lead to the inability to allow change and accept the use of technology as a benefit. The examiners were asked to “put on a different hat” to “consider how some of these technologies could potentially save lives including your own” and “understand the technology is necessary and look for ways to include its use during the exam rather than exclude” helped prepare the majority of the group for change. Not-to-mention, the majority were excited to be reminded of their important role, that we recognize their contributions and that their expert knowledge and recommendations are vital to this process.

 d. The experts from the dealership spent approximately 20-30 minutes describing each vehicle specific technology, which allowed the examiners time to ask questions and prepare for getting behind the wheel.

 e. The examiners then had the opportunity to become the operator, examiner and passenger in the backseat of the vehicle(s), thus providing different perspectives of the technology, alerts and sensors.

 f. Once the demonstrations were complete, we convened in a conference room for a townhall type meeting to discuss pros/cons, items that stood out and recommendations.
g. They were asked to consider the differences between safety critical technologies and convenience technologies and how those should be applied to our extremely outdated examination practices.

4. LESSONS LEARNED
a. Areas of concern or additional consideration from an examiner’s perspective:

i) Extended periods of inactivity and distraction were noted. Essentially forgetting to perform certain actions because the vehicle handled most of them. When intervention was required, there was a level of uncertainty and the possibility to react suddenly or harshly became a new concern.

ii) Differing vision levels were encountered and many struggled with the need to look at the road and outside surroundings, the heads-up display, new dash/steering wheel symbols and displays inside vehicle made it difficult for some visually impaired drivers.

iii) Technology is in its infancy. The examiners encountered one instance where the vehicle was unable to maintain the lane as the technology couldn’t read the lane markings. This appeared to be a driver error but later discovered it was not.

b) Areas which are tested and scored in Nevada, may require revision

i) Auto Wipers: Recommend only marking down points for vehicles that do not have this technology and the tester doesn’t turn them on – creating a visual hazard.

ii) Heads-up Display: The examiners had mixed feelings. The display can include posted speed limit, current speed, directions, etc. In most cases, this can ONLY be seen by driver.

iii) Brake Hold: when engaged at onset, this will hold the vehicle in a stopped position until pushing on the gas pedal or other action is taken. Ultimately, not demonstrating that the driver can perform this task.

iv) Auto Stop/Start at Light: vehicle will automatically stop at light and start when pushing on the gas pedal or other action is taken. Can cause hesitation and vehicle “jerking” at start of green light.

v) Lane Assist/Departure Warning: this was the biggest challenge the examiners faced. Each make/model will respond differently. Warnings can be just before the lane line, on the lane line or over the lane line. The examiners believe the warning should not be part of the scoring process and they should simply use their current observation method.

vi) Recording Routes: in Nevada, the routes are confidential. This opened the dialog for determining if this is still necessary. The examiners expressed concern over cameras used inside the vehicle during the examination. Several of the videos were later found on YouTube. The videos included the examiners face, without their consent.

vii) Auto Emergency Braking: vehicle may apply additional brakes if stopping in time appears to not be an option and the driver should be marked down for failing to demonstrate the ability to safely stop the vehicle. However, the examiners did not always know when the technology applied the brakes as opposed to the driver.
Appendix E Links to Jurisdictional Automated Driving System–Equipped Vehicles Testing Applications

The following is a list of jurisdictional application for AV testing reviewed by the Automated Vehicles Subcommittee. It is not a complete list of all jurisdictional applications.

Maryland – https://mva.maryland.gov/safety/Documents/PermitProcessforTestingHAVs.pdf

Rhode Island – https://www.ri.gov/press/view/33096
OUR VISION
Safe drivers
Safe vehicles
Secure identities
Saving lives!