First in Flight

Effects of License Plate Attributes on Automatic License Plate Recognition

NORTH CAROLINA

Daniel J. Findley, PhD, PE
Christopher M. Cunningham, PE
Jeffrey C. Chang, EI
Kyle A. Hovey
Michael A. Corwin

http://www.itre.ncsu.edu
Primary purpose of license plates is to identify vehicles

NC DMV standard issue plate is embossed with 3 letters and 4 numbers (red ink 2007-2009)

~100 specialized license plates
 - Full background
 - Standard issue background

Personalization also an option on standard plates and most specialized plates
Background

- **Automatic License Plate Recognition (ALPR)**
 - A tool to identify vehicles
 - Also known as:
 - Automatic number plate recognition
 - Automatic vehicle identification
 - Car plate recognition
 - License-plate recognition
 - Operates at up to 160 mph
 - 1,000’s of license plate checks per shift (50-100 manually)
Objective

- To determine the readability of North Carolina’s license plates with an ALPR system
- Focus on law enforcement applications using two ALPRs
 - City of Raleigh Police Department
 - Federal Signal / PIPS Research and Development
- Controlled environment
Experiment Design

• Collect plates (902 total)
• Catalog
 – Type
 – Plate number
 – Condition
 – Reflectivity
• Sort for field test
Experiment Design – 6 Plate Types

First in Flight

LRV-7900
NORTH CAROLINA

WXF-7388
NORTH CAROLINA

First in Flight

0325KF
NORTH CAROLINA

S4486
NORTH CAROLINA

First in Flight

Blue Ridge Parkway Foundation

0409BP
NORTH CAROLINA

Friends of the Smokies

6C99SM
NORTH CAROLINA

http://www.itre.ncsu.edu
Measures of Effectiveness

- **Capture Rate** represents the ability to locate and identify a license plate

 \[
 \text{Capture Rate} = \frac{\text{Number of License Plates Recognized As License Plates}}{\text{Total Number of License Plates Studied}}
 \]

- **Read Rate** represents accuracy of reading and processing characters

 \[
 \text{Read Rate} = \frac{\text{Number of License Plates Accurately Read}}{\text{Number of License Plates Recognized As License Plates}}
 \]
Read Rate and Capture Rate

- Three options for evaluating an ALPR:
 - No capture:
 - Capture only:
 - Capture and read:
Overall Results

<table>
<thead>
<tr>
<th>Raleigh PD ALPR Match Type and Quantity</th>
<th>Capture and Read</th>
<th>Capture Only</th>
<th>No Capture</th>
<th>Raleigh PD ALPR Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raleigh PD ALPR</td>
<td>271</td>
<td>16</td>
<td>6</td>
<td>293</td>
</tr>
<tr>
<td>Capture Only</td>
<td>81</td>
<td>297</td>
<td>23</td>
<td>401</td>
</tr>
<tr>
<td>No Capture</td>
<td>15</td>
<td>70</td>
<td>123</td>
<td>208</td>
</tr>
</tbody>
</table>

PIPS R&D ALPR Total

<table>
<thead>
<tr>
<th>Capture and Read</th>
<th>Capture Only</th>
<th>No Capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>367</td>
<td>383</td>
<td>152</td>
</tr>
</tbody>
</table>

902
Results by Plate Type

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Syntax Type</th>
<th># Plates</th>
<th>Raleigh PD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capture Rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>% (Number)</td>
</tr>
<tr>
<td>Standard Issue - Blue Ink</td>
<td>Std</td>
<td>154</td>
<td>96% (148)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>86</td>
<td>84% (72)</td>
</tr>
<tr>
<td>Standard Issue - Red Ink</td>
<td>Std</td>
<td>249</td>
<td>66% (164)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>25</td>
<td>56% (14)</td>
</tr>
<tr>
<td>Specialty FIF - No Stacked Character</td>
<td>Std</td>
<td>43</td>
<td>86% (37)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>4</td>
<td>50% (2)</td>
</tr>
<tr>
<td>Specialty FIF - Stacked Character</td>
<td>Std</td>
<td>83</td>
<td>80% (66)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>12</td>
<td>33% (4)</td>
</tr>
<tr>
<td>Specialty Non-FIF - New Style</td>
<td>Std</td>
<td>213</td>
<td>80% (171)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>27</td>
<td>52% (14)</td>
</tr>
<tr>
<td>Specialty Non-FIF - Old Style</td>
<td>Std</td>
<td>5</td>
<td>20% (1)</td>
</tr>
<tr>
<td></td>
<td>Person</td>
<td>1</td>
<td>100% (1)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>902</td>
<td>77% (694)</td>
</tr>
</tbody>
</table>

Note: Std = Standard, Person = Personalized
Stacked Characters

- 341 stacked characters on the 902 plates
- Raleigh PD ALPR system was able to capture 75% and able to accurately read 60% of the captured plates
Calibration

• For repeatability testing, 5 stations did not change during testing
• Four of the calibration stations had consistent readings on all but 1 of the possible 288 readings
 – Correct & Consistent: All 36 runs for the 2 standard syntax blue character plates and specialized plate in the standard issue format resulted
 – Incorrect & Consistent: Personalized standard issue blue character license plate, the Raleigh PD ALPR system reported an “8” instead of a “B”
 • One inconsistency: PIPS R&D ALPR same error as the Raleigh PD ALPR system for 35 of the runs and a different error on one of the runs in which the number string “15” was reported as “IS”
• The specialty plate with the full-background design created more difficulty in terms of repeatability for the two systems
 – Approximately two-thirds of the readings were consistent
Modeling Readability

• A logistic regression model was developed to model the probability of capture and read for standard issue license plates based on the Raleigh PD ALPR system
• Each of the terms were statistically significant
• Equations are:
 – Capture Rate = 0.05 - 1.3 * Red Ink + 0.03 * Contrast - 0.8 * Personalized
 – Read Rate = 0.4 - 2.1 * Red Ink + 0.01 * Contrast - 3.1 * Personalized

Where:
 – Red Ink = Presence of Red Ink on License Plate (0 = Blue Ink, 1 = Red Ink)
 – Contrast = Contrast Ratio of License Plate Characters and Background
 – Personalized = Presence of Personalized Syntax (0 = Standard Syntax, 1 = Personalized Syntax)
Modeling Readability - Capture Rate

![Graph showing probability of capture vs license plate contrast]

- Blue Ink, Personalized Syntax
- Red Ink, Personalized Syntax
- Blue Ink, Standard Syntax
- Red Ink, Standard Syntax

http://www.itre.ncsu.edu
Modeling Readability - Read Rate

![Graph showing the relationship between license plate contrast and the probability of read, with different inks and syntaxes.](http://www.itre.ncsu.edu)
Summary

• Most readable: standard issue, blue ink license plate
• Personalization resulted in a read rate ½ of the read rate of the standard issue syntax
• Red ink performed significantly worse
• Specialty plates without the stacked character were more easily captured and read
• Specialty license plates with the full background were generally captured, but difficulty accurately reading the plates
Conclusions and Recommendations

- Many incorrect matching combinations are matches between letters and numbers, supporting a need for syntax to read plates consistently
- Found significant difficulty with accurate readings of various specialty and personalized license plates
- Readability should be a criteria for consideration when decisions are made regarding new license plate designs
 - Ink color, syntax type, and contrast have a significant impact
 - Stacked characters, background colors, and consistent location of symbols are important on specialty plates
Acknowledgements

• This study was funded by the North Carolina Department of Transportation.

• The authors would like to acknowledge the efforts of those who supported the research:
 – Dr. Moy Biswas and Heath Gore of the Research Unit
 – Michael Robertson and Johanna Reese of the NCDOT DMV
 – Major Troy Butler and the North Carolina State Highway Patrol
 – Karen Brown, Charles Congleton, Jimmy Evans, Robert Leon, Tracey Goodwin, and additional staff from Correction Enterprises
 – Officer John Maultsby of the City of Raleigh Police Department
 – David Bynum with Federal Signal / PIPS Technology
Questions?

Daniel J. Findley, PhD, PE
Senior Research Associate
Institute for Transportation Research and Education
North Carolina State University

Daniel_Findley@ncsu.edu
(919) 515-8564
www.itre.ncsu.edu